
Interaction in Concurrent Systems

Inauguraldissertation

zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften

der Universität Mannheim

vorgelegt von

Christoph Friedrich Minnameier

aus Heidelberg

Mannheim, April 2010

Dekan: Professor Dr. Felix Freiling, Universität Mannheim

Referentin: Professor Dr. Mila Majster-Cederbaum, Universität Mannheim

Korreferent: Professor Dr. Ulrich Hertrampf, Universität Stuttgart

Tag der mündlichen Prüfung: 29. April 2010

Abstract

This dissertation is concerned with the theoretical analysis of component-

based models for concurrent systems. We focus on interaction systems, which

were introduced by Sifakis et al. in 2003. Centered around interaction sys-

tems, we also cover Minsky machines, Petri nets and the Linda calculus and

establish relations between the models by giving translations from one to the

other. Thus, we gain an insight concerning the expressiveness of the mod-

els and learn, given a system described in one syntax, how to simulate it in

another. Additionally, these translations allow us to deduce complexity and

undecidability results. Namely, we show that the questions whether a LinCa

process terminates or diverges under a maximum progress semantics are un-

decidable. We also prove that the problems of reachability, progress, local

and global deadlock and availability are PSPACE-complete in interaction

systems.

This complexity-theoretic classification serves as a motivation for the suf-

ficient condition approach that is presented in the second half of this work:

We present a generic approach to prove properties for component-based sys-

tems that allow for decomposition into subsystems. To avoid the problem of

state space explosion, we consider overlapping projections and thus compute

over-approximations of the reachable global state space. We enhance the

quality of these over-approximations by a technique we call Cross-Checking.

Based on the enhanced over-approximations, we may then prove properties

of the global system in polynomial time. We demonstrate our ideas by means

of interaction systems and for the property of local deadlock.

Zusammenfassung

Diese Dissertation befasst sich mit der theoretischen Analyse komponenten-

basierter Modelle für nebenläufige Systeme. Im Mittelpunkt steht dabei

das Modell der Interaktionssysteme, welches im Jahr 2003 von Sifakis et

al. eingeführt wurde. Im Kontext von Interaktionssystemen betrachten wir

Minsky-Maschinen, Petri-Netze und den Linda Kalkül und setzen die ver-

schiedenen Modelle durch Übersetzungen zueinander in Beziehung. Somit

erhalten wir einen Einblick in die Ausdrucksstärke der Modelle und erfahren,

wie man ein Modell, welches in einer Syntax gegeben ist, mittels einer anderen

simulieren kann. Zusätzlich erlauben die genannten Übersetzungen die Fol-

gerung von Komplexitäts- und Entscheidbarkeitsaussagen. Genauer gesagt

wird gezeigt, dass die Fragen, ob ein LinCa Prozess terminiert bzw. divergiert

unter einer Semantik, die maximalen Fortschritt fordert, unentscheid-

bar sind. Wir zeigen außerdem, dass die Probleme Erreichbarkeit, Fortschritt,

Lokaler und Globaler Deadlock, sowie Verfügbarkeit in Interaktionssystemen

PSPACE-vollständig sind.

Diese komplexitätstheoretische Klassifizierung dient als Motivation für

den Ansatz einer hinreichenden Bedingung, der in der zweiten Hälfte der

Arbeit vorgestellt wird: Wir demonstrieren eine allgemeingültige Methode,

Eigenschaften von komponenten-basierten Systemen zu beweisen, die eine

Zerlegung in Teilsysteme erlauben. Um das Problem der Zustandsraumexplo-

sion zu vermeiden, betrachten wir überlappende Projektionen und berechnen

damit Überapproximationen des global erreichbaren Zustandsraums. Wir

verbessern die Qualität dieser Überapproximationen dann mit einer Tech-

nik, die wir Cross-Checking nennen. Basierend auf den verbesserten Über-

approximationen können wir schließlich Eigenschaften des globalen Systems

in polynomieller Zeit beweisen. Wir veranschaulichen unsere Ideen anhand

von Interaktionssystemen und für die Eigenschaft Lokaler Deadlock.

�Ein Mensch, der um anderer willen, ohne dass es seine eigeneLeidenschaft, sein eigenes Bedürfnis ist, sich um Geld oder Ehreoder sonst etwas abarbeitet, ist immer ein Tor.�- Johann Wolfgang von Goethe -�Die Leiden des jungen Werther, Brief vom 20. Julius�

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 6

1.3 Road Map . 11

2 Models & Equivalences 13

2.1 Characteristic Properties of Models for Concurrent Systems . 15

2.2 Basic Definitions . 21

2.3 Interaction Systems . 24

2.4 Petri Nets . 35

2.5 The Linda Calculus . 39

2.6 Minsky Machines . 46

2.7 Equivalences . 48

3 Mappings 53

3.1 Interaction Systems and 1-safe Nets 54

3.2 The various Semantics of the Linda Calculus 66

4 Undecidability 75

4.1 Overview . 75

4.2 Termination is undecidable in MTS-mp-LinCa 77

4.3 Divergence is undecidable in MTS-mp-LinCa 81

5 Complexity 85

5.1 Overview . 85

i

ii CONTENTS

5.2 Reducing 3-SAT to LDIS and GDIS 85

5.3 Everything is PSPACE-complete in Interaction Systems 95

6 An efficient Approach 113

6.1 Overview . 113

6.2 Subsystem Reachability . 114

6.3 A basic sufficient Condition 119

6.4 Generalizing sufficient Conditions based on local Predicates . . 128

6.5 Cross-Checking for Reachability 133

6.6 An advanced sufficient Condition 142

6.7 Cross-Checking for Uncriticalness 153

6.8 Restriction to connected Subsystems 159

7 Conclusion & Related Work 169

7.1 Formal Verification . 169

7.2 Related Work . 174

7.3 Concluding Remarks . 177

Bibliography 182

A 197

A.1 A simple Example for encMTS 197

B 200

B.1 Sample Data derived from our Tool PrInSESSA 200

B.2 Checking for small Deadlocks 200

Acknowledgments

First, I am grateful to Professor Mila Majster-Cederbaum for introducing me

to this new area of research and for being a great supervisor. Apart from

her helpful technical guidance, I thank her for her kind and supportive na-

ture. She was always approachable and still allowed for unsupervised phases

whenever I felt I needed to work things out on my own.

I also thank the second referee Professor Ulrich Hertrampf. He aroused my

interest in theoretic computer science and inspired me with his excellent way

of teaching when I studied at the University of Stuttgart.

Thanks to my fellow workers Moritz, Nils and Christian for making my time

very endurable and also for proof-reading and fruitful discussions.

\ [

I thank my parents for teaching me tolerance, humor and love as axioms –

and for teaching me rationalism to deduce all other virtues in life myself.

I thank Anna for bringing meaning to my life and for pointing out to me

from time to time that the above mentioned axioms are much more impor-

tant than rationalism or anything you can deduce from them.

iv

Chapter 1

Introduction

1.1 Motivation

In 1965, Intel co-founder Gordon E. Moore [Moo65] prognosticated that the

maximum available computation speed of a processor would be doubled by

developers every 18 months. This claim has been found astonishingly accu-

rate ever since the first personal computers were manufactured.

The complexity for minimum component costs has increased at

a rate of roughly a factor of two per year ... Certainly over the

short term this rate can be expected to continue, if not to increase.

Over the longer term, the rate of increase is a bit more uncertain,

although there is no reason to believe it will not remain nearly

constant for at least 10 years. That means by 1975, the number

of components per integrated circuit for minimum cost will be

65,000. I believe that such a large circuit can be built on a single

wafer.

In the past decades, hardware developers have been predicting all the way

that the time draws nearer when Moore’s Law will cease to be valid. Although

Moore’s Law still seems to be correct, such doubts are not easily dismissed

because it seems quite clear that making processing units ever smaller and

thus ever faster is not a process that can go on forever.

1

2 1.1 Motivation

Independently of the validity of either perspective, recent hardware design

tendencies show that information technology is, in practically all areas, ever

more relying on multiple cooperating processing units rather than single over-

powered cores. Where some ten or twenty years ago, only supercomputers

used to consist of multiple processing units, nowadays even commodities like

video consoles possess multiple processing units, the best possible example

for this is Sony’s PS3, whose CELL processor contains nine processing units

in one chip [KBLD08].

In general, reasons for this trend can easily be named as the two sides of the

same coin: the need for ever stronger processing power on the one hand and

the economic want for ever cheaper processing power on the other hand.

While multiple processor systems, communicating software entities or com-

municating processes, which we all abstract under the name of concurrent

systems, provide the benefits of reusability and cheap computation power,

they also pose specific, hitherto unencountered problems to their developers.

One of the most important and probably the most prominent among these

problems is the question whether a system can reach a deadlock, which was

illustrated in 1971 by the dutch computer scientist Edsger Dijkstra: Dijkstra

set an examination question about a synchronization problem where five

computers competed for access to five shared tape drive peripherals. Soon

afterwards the problem was retold by Tony Hoare as the Dining Philosophers

Problem (see Figure 1.1).

Figure 1.1: The Dining Philosophers Problem

1.1 Motivation 3

Five philosophers sitting around a table with one fork between every pair of

them want to have dinner. Initially, each philosopher is thinking. At every

point of time a thinking philosopher can grab one of her adjacent forks.

Once she has both forks, she can eat and then put down the forks to resume

thinking. As this is a model for a concurrent system, the philosophers act

independently of each other, i.e., philosopher one might grab the fork to her

right, then philosopher three might grab the fork to her left and then the one

to her right, then philosopher one might grab the fork to her left and eat,

then philosopher three might eat and so on.

Dijkstra’s well-known Dining Philosophers example illustrates the problem

of deadlock, which is, roughly spoken, the question whether a system (in

this case the dinner-party) can reach a situation where neither of the par-

ticipants will be able to take any further action. Indeed, at second glance,

we notice that the philosophers’ independence from each other is subject to

a constraint: Only one of them at a time can access a single common re-

source (i.e., a fork): E.g., when philosopher one has taken her left fork, then

philosopher two will not be able to access this fork (i.e., her right one).

Hence, if every philosopher stops thinking and grabs the fork to her right,

neither of them will be able to get hold of both forks in order to be able to

eat. Such a behavior is usually considered unwanted in concurrent systems

and a major part of concurrency theory consists of finding ways to decide

problems like the existence of a deadlock.

When computer science first encountered these problems (that are often hard

to detect in both hardware and software architectures) the need for formal-

izations arose and was served by the emergence of a new scientific area called

formal methods. Formal methods are concerned with specification and veri-

fication, i.e., based on a model that can be seen as a mathematic abstraction

of the respective architecture the system instance in question is described

(specification). Then certain proof techniques – in some cases partly human-

directed – are applied in order to prove the desired properties (verification).

4 1.1 Motivation

Since the first approaches that not only check systems for failures, but also

prove certain properties, one can identify five major approaches that try to

reach this goal in different ways1:

i) Deductive Program Verification,

ii) Abstract Interpretation,

iii) Sufficient Conditions,

iv) Model-Checking,

v) Equivalences.

Deductive program verification goes back to Floyd and Hoare [Flo67, Hoa69]

and combines explicit code with logic to formally verify programs. Abstract

interpretation comprises approaches that abstract from certain aspects of a

system (or program) to make the verification of properties easier. Sufficient

conditions cover a large bandwidth of techniques. We use this term for all ap-

proaches that try to verify properties of a system under certain circumstances

(resp. preconditions). Model-checking proves for a system, which is usually

represented by an automaton M , a property which is expressed in a formula

of temporal logic, e.g., an LTL-formula φ. A more direct approach that is

based on the equivalences which are used to describe similarities between

(transition) systems is, given a pair of systems, the automatic computation

of such equivalences.

Formal methods’ major difficulty is to handle large scale systems, due to the

problem of state space explosion: As a state of the entire system is an element

of the cross-product of the state spaces of the n communicating entities, the

so called global state space may become exponentially large in n. On the

other hand in order to verify, e.g., that a system does not contain a deadlock,

it seems – at first glance – unavoidable to explore the global state space.

This thesis deals with issues of decidability and computational complexity

in concurrent systems. Its focus lies on models where computation and com-

1Here, we confine with sketching these approaches. For a more detailed discussion,

especially w.r.t. the techniques presented in this work, see Chapter 7.

1.1 Motivation 5

munication are separated and on interaction systems in particular. Inter-

action systems are a model for component-based concurrent systems that

was introduced by Joseph Sifakis et al. in 2003 [GS03]. As a representative

of component-based systems, interaction systems build on components, i.e.

reusable (software or hardware) entities that are to a certain degree indepen-

dent of their environment. A component can be represented by an interface

and a behavioral model. Additionally, component-based systems provide the

so-called glue code, which is used to specify the communication among com-

ponents and thus build systems from components. This idea – of separating

sequential computation from the communication necessary to make the se-

quential entities work together – also manifests in coordination languages

and calculi.

Our aim is to provide a better understanding of the computational capabili-

ties of interaction systems by classifying them among other well-known and

well-understood models for concurrency. The translations given between the

models not only enable us to reason about a notion of expressiveness but also

yield complexity results that motivate the sufficient conditions for deadlock-

freedom that are presented in this thesis.

Given the (theoretically proven) difficulty of the discussed problems we in-

tend to contribute new ideas to the general area of verification that has not

yet found the silver bullet against state space explosion. We introduce an

approach to prove properties of component-based systems in which we build

subsystems of component-based systems in order to over-approximate the

reachable global state space and prove global properties based on predicates

on the over-approximation and underline the effectiveness of our approaches

by case studies.

6 1.2 Contribution

1.2 Contribution

1.2.1 Classifying Interaction Systems among related Models of

Concurrency

Focusing on interaction systems, we establish relations between the models

of our interest by giving translations between them that preserve certain

properties, depending on the respective purpose of such a mapping.

Figure 1.2 displays and relates the various models, where we use the following

abbreviations: ĨS denotes Sifakis’ original notion of interaction systems that

we extend to a more general class. 1SN stands for 1-Safe nets and CFN

for communication-free nets. While both are subclasses of Petri nets, the

former can be considered a finite model while the latter can not, a fact that

is also sketched in the picture. Finally, LinCaMTS−mp is used to denote the

Linda calculus under a maximum progress semantics. All of these classes

are formally defined in Chapter 2. The notion of finite, resp. infinite model

refers to the behavior that can be modeled. Cyclic behavior that allows for

infinite traces by looping over a finite set of global states is considered finite,

whereas models that allow for an infinite state space and thus the existence

of non-cyclic infinite traces are – in our terminology – considered infinite.

The arrows in Figure 1.2 represent the translations and are marked by the

number of the corresponding section where we present the translation. The

picture also includes Yoram Hirshfeld’s [Hir94] translation from Minsky ma-

chines to communication-free nets (CFN) that inspired our translation from

Minsky machines to LinCaMTS−mp.

1.2.2 Complexity & Undecidability

When the work on this thesis started, there existed no complexity-theoretic

knowledge about problems in interaction systems. As a first contribution

in this area we present an NP-hardness result for the problems of local and

1.2.2 Complexity & Undecidability 7

ĨS

Interaction

Systems

Petri Nets

1SN CFN
3.1.2

3.1.1

Minsky

Machines

Linda Calculus

LinCaMTS−mp

4.2, 4.3

Finite Models

Infinite Models
[Hir94]

Figure 1.2: Classification Overview

global deadlock in interaction systems (cf. [Min07]2). An NP-hardness result

for progress that is established following the idea of [Min07] can be found in

[MMM06] resp. [MMM07b].

A more thorough examination yields a mapping from 1-Safe-nets to interac-

tion systems that implies PSPACE-hardness for reachability and liveness in

interaction systems [MM08b]. Together with a chain of reductions and the

proof that availability is in PSPACE, we may deduce PSPACE-completeness

for most relevant problems in interaction systems [MM08c].

For the Linda calculus under a maximum progress semantics (LinCaMTS-mp),

we give reductions from Minsky machines to LinCa which preserve termina-

tion respectively divergence and thus imply undecidability of these questions

in LinCaMTS-mp [MM06].

Figure 1.3 displays the undecidability and complexity results that are pre-

sented in this thesis. Note that the figure does not contain implications but

2This first work on complexity issues in interaction systems served as a motivation

for [GGM+07b], where the authors try to ensure properties of interaction systems by

construction.

8 1.2 Contribution

is restricted to the strongest results3. Again, edge labels denote the corre-

sponding sections that present the results.

ĨS

Interaction

Systems

Linda Calculus

LinCaMTS−mp

Termination

Divergence

Undecidabilities:

4.3

Reachability

Local Deadlock

Global Deadlock

Progress

Availability

Liveness

∈ PSPACE 5.3

PSPACE-hard

5.3.5

4.2

Figure 1.3: Complexity & Undecidability Overview

1.2.3 An efficient Approach

The greatest obstacle to overcome for formal verification has always been

state space explosion, i.e., the exponential growth that occurs in the size of

the Cartesian product of the local state spaces when increasing the number of

components. There exist various approaches to tackle state space explosion

and we give a specific discussion of closely related work as well as a more

general discussion in Chapter 7.

After establishing the result that (assuming P 6= NP) no universal polynom-

ial-time algorithm exists that solves the problem of deadlock for arbitrary in-

teraction systems, we present a polynomial-time algorithm (cf. Algorithm 2,

p. 123) that investigates so-called subsystems of an interaction system and

3I.e., the hardness and undecidability results carry over to supersets and the com-

putability results carry over to subsets.

1.2.3 An efficient Approach 9

tries to verify deadlock-freedom based on the information gained in the sub-

systems [MMM07a].

Our first approach consists of three aspects: We build on reachability analyses

for the subsystems. In order to avoid state space explosion we restrict our

observations to subsystems of a certain parametrized size d (which becomes

manifest as the degree of our polynomial time bound). Then, we prove

a property for the global system by means of locally checkable predicates

(i.e., predicates on states of the subsystems) that imply deadlock-freedom

of corresponding global states. This first approach is able to prove non-

trivial systems (cf. Example 6.2, p. 125) deadlock-free even if we restrict the

size of observed subsystems to 3. The system is non-trivial and it has an

exponentially large reachable global state space and interactions of arbitrary

size.

We sketch the basic idea in the center of Figure 1.4 and arrange the aspects

in which we improve it in a circular manner around it. The labels of the edges

denote in which section we introduce the respective improvement. The ideas

that we apply to improve our basic approach can be described as follows.

Firstly, we improve the results of [MMM07a] by enhancing the information

that is obtained by the subsystem reachability analyses but restrict ourselves

to methods that have at most the same asymptotic complexity as the basic

subsystem analyses. We introduce the Cross-Checking technique for reacha-

bility, which compares the information given by the subsystem reachability

analyses and checks them against each other to distill more information than

initially available. Thus, it refutes the reachability of certain global states

without exceeding our hitherto established time bounds.

As a next step, we enhance our sufficient condition in order to take into

account the information that is given by subsystems of size d > 3. In other

words, we formulate a dynamic condition (that scales with d). Namely,

we distinguish between local deadlocks of size smaller than (or equal to)

d and larger than d and detect the smaller ones directly while introducing a

condition that excludes the existence of larger ones.

10 1.2 Contribution

In order to further minimize the number of potential deadlocks, we modify

our Cross-Checking technique to prove that certain subsystem states can

not be part of large deadlocks. We call this technique Cross-Checking for

uncriticalness.

Finally, we argue that restricting all considerations to subsystems that are

connected (in the sense of the components’ communication structure) does

not affect any results established so far and may reduce the number of inves-

tigated subsystems to a linear bound even for non-trivial systems.

Subsystem Analyses

Parametrized Size d

Static Condition

Cross-Checking for Reachability

Dynamic Condition

Cross-Checking for Uncriticalness

Restriction to Connectedness

6.3

6.3

6.5

6.6

6.7

6.8

Figure 1.4: Efficient Approaches Overview

From a complexity theoretic point of view, our contribution in this topic can

be formulated as follows. By our various enhancements of the basic idea of a

subsystem reachability analysis we construct an approach that proves (arbi-

trarily large instances of) Tanenbaum’s solution to the Dining Philosophers

deadlock-free in polynomial-time by investigating only a linear number of

subsystems of size d = 5.

To measure the quality of our general approach, respectively the various im-

provements that we already mentioned, we give – along with our presentation

– case studies for each of the respective steps.

1.3 Road Map 11

1.3 Road Map

We start out in Chapter 2 by presenting the investigated models, i.e., we give

an explanation and a formal definition and in some cases provide definitions

and motivations for variations of the respective models. The models we dis-

cuss in the context of interaction systems (IS) are Petri nets (PN), the Linda

calculus (LinCa) and Minsky machines (MM). We also define problems for

the various models and compare them w.r.t. design principles for concurrent

systems. We finish Chapter 2 by defining some equivalence notions that are

used in this work.

Chapter 3 establishes relations between some of our models (with the focus

on IS) and between some variations of LinCa. Namely, we give translations

between IS and 1SN that yield isomorphism (up to a label relation) between

the respective global transition systems. Also, we compare three variants

of LinCa w.r.t the traces that occur in their respective global transition

systems.

In Chapter 4 we present undecidability results for LinCa under a maximum

progress semantics. We provide reductions from Minsky machines to LinCa

that prove that the problems of termination and divergence are undecidable

for LinCaMTS−mp.

For the model of IS we present complexity results in Chapter 5: As an intro-

duction, we give an NP-hardness result for Local and Global Deadlock. Then

we present a chain of reductions that – building on the PSPACE-hardness of

reachability that is established by the translation function from Petri nets to

interaction systems, presented in Section 3.1.1 – proves Reachability, Local

and Global Deadlock, Progress and Availability to be PSPACE-complete in

IS.

Finally, in Chapter 6 we present a sufficient condition for deadlock-freedom

in IS. The approach (that carries over to other component-based models

that feature multi-party synchronizations) starts with a relatively simple and

strong condition that investigates subsystems of a parametrized size d and

tries to prove a locally checked predicate. We then generalize and enhance

12 1.3 Road Map

the approach. Firstly, by applying more sophisticated conditions that refute

the existence of deadlocks and secondly by providing a method that signif-

icantly enhances the quality of our subsystem reachability approximations

without raising the asymptotic time bounds of the overall procedure. The

ideas are illustrated by the example of Tanenbaum’s version of Dijkstra’s

Dining Philosophers where we derive empiric data from an implementation

of our approach that can be found in [MS08].

We give a conclusion in Chapter 7, summing up our contributions and classi-

fying our techniques for efficient deadlock-detection among other approaches

of formal methods.

Chapter 2

Models & Equivalences

In this chapter, we introduce Sifakis’ interaction systems and along with them

the various other models that we investigate and discuss in their context.

We start out by defining two variants of interaction systems: The original

version of Sifakis that is subject to certain syntactic constraints and a relaxed,

more general version.

Then we introduce Petri nets that, like interaction systems, feature multi-

party synchronizations. In contrast to interaction systems, Petri nets do

not feature compositionality (at least not in the sense that the identity of

composed structures is preserved). As general Petri nets are an infinite model

and thus are not appropriate for a comparison with interaction systems, we

also define the subclass of 1-safe Petri nets.

We introduce Linda as a representative for the class of coordination lan-

guages. Coordination languages – very much like component-based systems

– reflect the orthogonality paradigm, i.e., the demand to separate the ideas of

computation and communication, a fact that Ciancarini [CJY95] described

by the equation “Programming = Computation + Communication”. Linda

and coordination languages in general are thus closely related to component-

based models.

Finally, we introduce Minsky machines, a Turing complete model for sequen-

tial computation. Building upon the fact that termination is undecidable

for Minsky machines, we can prove undecidability of, e.g., termination by

13

14 Models & Equivalences

encoding (in a termination-preserving manner) Minsky machines in other

models.

The various models and their respective variations that are discussed, in-

vestigated and applied in proofs in this thesis are enlisted here as follows

(where the number in parentheses gives the corresponding section of their

introduction).

• Interaction Systems (2.3)

B IS (Generalized interaction systems)

B ĨS (Original interaction systems)

• Petri Nets (2.4)

B PN (Petri nets)

B 1SN (1-safe nets)

B CFN (Communication-free nets)

• Linda (2.5)

B LinCaITS (Interleaving semantics)

B LinCaMTS (Multi-step semantics)

B LinCaMTS-mp (Multi-step semantics with maximum progress)

• Minsky Machines (2.6)

B MM (Minsky machines)

In each section, we present a model and discuss its particular (dis-)advantages

over other models. In order to have the corresponding terminology at hand

when we introduce a model and point out its specific characteristics, we

introduce some notions in the next section that will be used throughout this

chapter and especially when we finally enlist and oppose the properties of

the models with respect to each other in Figure 2.1 (p. 20).

2.1 Characteristic Properties of Models for Concurrent Systems 15

2.1 Characteristic Properties of Models for Concur-

rent Systems

Interleaving vs. True-Concurrency

One of the most important and also most controversially discussed issues in

concurrency theory is the discussion of interleaving semantics vs. true con-

currency. The distinctions between the two points of view are best displayed

by means of a process algebra like CCS [Mil89]:

In interleaving semantics we consider the equation a||b = a.b + b.a to be

valid, i.e., the parallel execution of two actions a and b is interpreted as the

execution of a and then b or b and then a.

The interleaving view argues that two actions never take place at exactly the

same time and so they occur one after the other. If we consider this to be

true it is convenient to consider the interleaving view as a nice foundation

for elegant definitions of models for concurrency. There are however situa-

tions when this “abstraction” of reality ceases to be precise enough for our

purposes. E.g., if we want to take into account the cases where a starts, then

b starts, then b ends and finally a ends (which is a very realistic scenario

in concurrent programming) then the interleaving point of view is no longer

sufficient.

In this thesis, we investigate both points of view for the Linda calculus. We

also define a semantics that does not only allow for true concurrency syn-

chronizations but assumes a common clock for all processes and demands

maximum progress, i.e., in every clock cycle we have to perform a maximal

(w.r.t. set inclusion) amount of actions.

Finite vs. Infinite Models

When we speak of finite, respectively infinite models, we do not refer to their

syntactic description (which we clearly want to be finite in all cases) but to

their behavior, or more precisely, their state space. For each model that we

introduce in this chapter we define a transition system T = (Q, Lab,→, q0)

16 2.1 Characteristic Properties of Models for Concurrent Systems

(cf. Definition 2.1, p. 21) that describes its behavior. We call a model infinite

iff it allows for a state space Q whose cardinality is infinite. Of course, even

models with a finite state space (e.g., interaction systems) feature infinite be-

havior. However, this is always due to a loop over a sequence of interactions.

In contrast to this, general Petri nets or the Linda calculus feature an infinite

state space and thus infinite non-repetitive traces due to the unboundedness

of their storage (i.e., the places in a Petri net or the tuple space in LinCa).

Storage- vs. Channel-based Communication

In concurrent systems we expect multiple processing units to communi-

cate to achieve a common (computation) goal. This communication can be

storage-based, i.e., unit A writes some piece of information to a shared1 stor-

age and unit B may read it from there, or channel-based, i.e., some piece of

information is sent directly over a channel. Communication in interaction

systems is channel-based which is reflected in the name of a connector which

connects certain ports. For Petri nets one might consider the places as the

communicating entities in which case we would view them as channel-based,

where the arcs and transitions would be the channels. On the other hand, if

we consider the transitions to be the communicating entities, we would say

the communication is storage-based through the places2. LinCa is clearly

storage-based with the tuple space being the storage.

Synchronous vs. Asynchronous Communication

Asynchronous communication describes the fact that the sender of a message

does not depend on the receiver in order to send the message. On the other

1The extent to which storage is shared may vary: For each processing unit A and each

storage unit we can set a value for whether A may read from the storage unit and whether

A may write to it.
2This view may seem odd at first glance. However, note that a place is lacking anything

like a local behavior which a process or a component usually supplies. The fact that a

place lacks a “purpose” or a “want” for communication makes it convenient to consider it

a mere storage.

2.1 Characteristic Properties of Models for Concurrent Systems 17

hand, she can not rely on the receiver to read the message at once. It may be

read later or perhaps never. In contrast, synchronous communication means

that the sender has to perform some kind of handshake with the receiver

which yields a certain interdependence on the one hand but assures that a

message is read at the moment it is sent. Intuitively, the distinction between

synchronous and asynchronous communication coincides with the above def-

inition of channel- vs. storage-based communication. There are also special

cases where a LiFo- or a FiFo-buffer is used as means of communication. It

can be said that synchronous communication can model asynchronous com-

munication (by introducing an auxiliary component that serves as a store)

but not the other way round. Interaction systems and Petri nets feature

synchronous communication while in LinCa, communication is asynchronous

over the tuple space respectively the shared variables.

Degree of Synchronization

It is reasonable to assume that communication can never really be syn-

chronous because there will always be a delay ε in communication of two

entities, so synchronous communication models something on a higher layer

of abstraction that is realized (or approximated) by specific protocols. Sim-

ilarly, some models provide a means for synchronization between more than

two entities for a more intuitive and more compressed description of certain

operational sequences. Interaction systems feature multi-party synchroniza-

tion due to the notion of connectors. Petri nets feature multi-party synchro-

nizations by allowing for more than two ingoing arcs for a transition. LinCa

processes on the other hand allow for pairwise synchronization3 only.

Endogenous vs. Exogenous Communication

In [Arb98], Farhad Arbab classified coordination models and languages as

either endogenous or exogenous: In endogenous models and languages there

3In this context, we consider a synchronization to be a communication of a process

with the tuple space.

18 2.1 Characteristic Properties of Models for Concurrent Systems

exist primitives that must be incorporated within a computation for its co-

ordination. In applications that use such models, primitives that affect the

coordination of each module are inside the module itself. In contrast, exoge-

nous models and languages provide primitives that support the coordination

of entities from without. In applications that use exogenous models, primi-

tives that affect the coordination of each module are outside the module it-

self. Endogenous models lead to intermixing of coordination primitives with

computation code. This entangles the semantics of computation with coor-

dination, thus making the coordination part inside the application implicit

and sometimes nebulous, a fact Petri nets are often accused for. However,

endogenous coordination models are quite intuitive for a huge variety of ap-

plications: One of the main reasons that the Linda tuple space coordination

model has been a reference model in the context of distributed programming

for such a long time is its naturalness and flexibility.

Compositionality and Identity Preservation

It is possible for more or less all models for concurrent systems to somehow

merge two systems to a single combined system by defining some glue code

for their components. When we speak about compositionality we usually

refer to the question to which extent one may define “reasonable” general

operators that can be used to compose a system out of atomic components

or out of already existing subsystems. One of the major aspects of such

an operator is the preservation of component identity: As mentioned above,

Petri nets somehow mix up communication and computation and once a net

has been constructed, one can hardly say for which part of a computation a

certain place or a certain transition is responsible. More generally, there is

no or hardly any correspondence between the natural, logic decomposition

of the overall task into sub tasks on the one hand and the interweavement of

“subnets” on the other. In Petri nets, composing a net out of smaller nets lets

the parts lose their identity and this makes it impossible to decompose a large

net into original parts to reason about global properties on a different layer

2.1 Characteristic Properties of Models for Concurrent Systems 19

of abstraction. When composing an interaction system from components by

defining the glue-code, the identity of components is preserved, i.e., the user

may still identify single components after composition. This fact is very sub-

stantial for the ideas presented in Chapter 6, where build subsystems of a

system for a more efficient (approximative) analysis of the reachable global

state space.

Figure 2.1 displays the models that are defined in this chapter and connects

them to various design properties of formal models. Please note that our

models do come from diverse contexts and have different natures that are

sometimes hard to compare. We abstain here from justifying every marking

“×” in the table but rather aim to give an overview as well as a quick refer-

ence for whenever the reader is interested in the commonalities or differences

between a pair of models.

20
2.1

C
h
aracteristic

P
rop

erties
of

M
o
d
els

for
C

on
cu

rren
t

S
y
stem

s

IS ĨS PN 1SN CFN LinCa LinCaMTS−mp LinCaMTS

interleaving × × × × × ×

true concurrency × ×

maximum progress ×

finite × × ×

infinite × × × × ×

storage-based × × ×

channel-based × × × × ×

synchronous × × × ×

asynchronous × × × ×

pairwise synch. × × ×

multi-party synch. × × × ×

endogenous comm. × × × × × ×

exogenous comm. × ×

identity pres. × ×

identity not pres. × × × × × ×

F
igu

re
2.1:

P
rop

erties
of

th
e

M
o
d
els

2.2 Basic Definitions 21

2.2 Basic Definitions

Definition 2.1

A labeled transition system is a quadruple T = (Q, Lab,→, q0), where

Q is the (possibly infinite) set of states, Lab is the set of labels and →⊆

Q × Lab × Q is a ternary relation (of labeled transitions). q0 ∈ Q is the

designated starting state. For q, q′ ∈ Q and a ∈ Lab, (q, a, q′) ∈ → is also

denoted by q
a
→ q′. This represents the fact that there is a transition from

state q to state q′ with label a. We write q 6→ iff @a ∈ Lab, q′ ∈ Q with

q
a
→ q′.

Remark 2.1

In this Chapter we describe the semantics (respectively the behavior) for

different models of computation, always by means of a labeled transition

system. Please note that throughout this work we will – for ease of notation

– often identify the syntactic description of a system with its behavior.

Definition 2.2

Given a label set Lab, we denote by Lab∗ the Kleene star closure of Lab.

Let Lab∗ contain all finite sequences over labels a ∈ Lab, including the empty

sequence, respectively the empty word, which we denote by ε.

Definition 2.3

Let →⊆ Q × Lab × Q be a ternary relation.

Then →∗⊆ Q×Lab∗ ×Q denotes the reflexive and transitive closure of

→ by

• ∀q ∈ Q (q, ε, q) ∈→∗.

• ((q, w, q′) ∈→∗ ∧ (q′, a, q′′) ∈→) ⇒ (q, w ◦ a, q′′) ∈→∗,

where ◦ denotes concatenation.

For the following definitions let T = (Q, Lab,→, q0) be a labeled transition

system.

22 2.2 Basic Definitions

Definition 2.4

Let Reach(T) ⊆ Q denote the reachable state space of T given by

Reach(T) := {q ∈ Q | ∃w ∈ Lab∗ (q0, w, q) ∈→∗}

Definition 2.5

Given a state q ∈ Q we denote by reachability of q the question, whether

q ∈ Reach(T).

Definition 2.6

By Traces(T) ⊆ Lab∗, we denote the set of traces of T, i.e., the words in

Lab∗ that correspond to a transition sequence starting in q0.

Traces(T) := {w ∈ Lab∗ | ∃q ∈ Q (q0, w, q) ∈→∗}.

Definition 2.7

We call an infinite transition sequence q0 α1→ q1 α2→ q2 . . . which starts in q0 a

run of T .

Definition 2.8

Sometimes the set Lab will contain a designated label τ ∈ Lab that we

call the silent (or internal) action, i.e., an action which is not visible to

external observers. For this case, the visible transition relation →+⊆

Q×Lab\{τ}×Q will consist of an arbitrary number of τ transitions followed

by a visible transition.

q
a
→

+
q′ iff ∃q1, ..., qn ∈ Q, s. t. q

τ
→ q1 τ

→ ...
τ
→ qn a

→ q′.

If Lab contains a designated silent action τ we replace → by →+ in the

definition of the set of traces. As a consequence, Traces(T) ⊆ (Lab \ {τ})∗.

Definition 2.9

We say that a labeled transition system T terminates if ∃q ∈ Reach(T) q 6→.

2.2 Basic Definitions 23

Definition 2.10

We say that a labeled transition system T diverges if it contains at least

one run.

Remark 2.2

Please note that the Definitions 2.9 and 2.10 obviously allow a labeled tran-

sition system to both terminate and diverge.

Definition 2.11

A multiset is a set that may include multiple instances of the same element.

Given a multiset M , we write (a, k) ∈ M (k ≥ 0) iff M includes exactly

k instances of the element a. For ease of notation we will sometimes write

a ∈ M instead of (a, 1) ∈ M and a 6∈ M , instead of (a, 0) ∈ M . We will use

the operators], \ and ⊆ on multisets in their intuitive meaning.

Remark 2.3

Please note that in Chapter 6 we use the operator] as a union on normal

sets to denote the fact that the corresponding sets are disjoint. However,

it will in this case be clear from the context that we are not operating on

multisets.

Definition 2.12

Given a multiset M we denote by set(M) the set derived from M by deleting

every instance of each element except for one, i.e.,

set(M) = {a | ∃i > 0 ∈ N : (a, i) ∈ M}.

Definition 2.13

Given a set S we denote the power-multiset, i.e., the set of all multisets

over S by ℘(S).

24 2.3 Interaction Systems

2.3 Interaction Systems

Interaction systems are a model for component-based systems that was pro-

posed and discussed in detail in [GS03], [Sif05], [GS05], [BBS06], [GGM+07b],

[GGM+07a] and [MMM07a]. We start out by introducing our own (slightly

generalized) notion of interaction systems in Section 2.3.1 and then introduce

the original definition from [GS03] (to which we refer by ĨS) in Section 2.3.2.

A major motivation for the invention of IS [GS03] was to construct “an

appropriate setting where absence of deadlock means satisfaction of strong

coordination properties.” The resulting framework consisted of three lay-

ers as depicted in Figure 2.2, where the different layers have the following

purposes:

• The static description layer consists of a set of components (which

are denoted by squares). The interface of a component is given by its

so-called port set that defines the actions that are offered for synchro-

nization. The port sets of the various components are pairwise disjoint.

• While the static description layer may be considered sufficient to in-

tegrate a component into a system we provide the behavioral layer to

allow (respectively control) access to the component’s behavior. We

may deny access to a component’s behavior (and provide a component

as a black box). On the other hand, in order to modify a component’s

behavior or to allow for reasoning about the global behavior we may

allow others to access a component’s behavior (and provide it as a white

box).

• The interaction layer specifies the allowed synchronizations between

the components. A synchronization is called an interaction and de-

notes the synchronous execution of actions of different components. In

Sifakis’ original definition of interaction systems the formal definition

of the interaction layer (that is called interaction model) may not be

defined at will but is subject to some constraints that we have removed

for the definition of the class IS.

2.3 Interaction Systems 25

Interaction Layer / Glue Code

...

Behavioral Layer

...

Static Description

Figure 2.2: Layered system description

This layer concept provides several advantages:

Firstly, it is possible to detain information by providing business partners,

e.g., with information about the interface of a (software or hardware) com-

ponent but not with its local behavior. This idea basically corresponds to

marking variables or functions “private” in conventional programming lan-

guages. Secondly, you can easily abstract from information, i.e., even if you

have information about the local behaviors you can ignore it and thus assume

another degree of abstraction. Thirdly and most importantly in our context,

we can build subsystems of a system by projecting the glue-code (i.e. the

interactions) to a subset of the components. As we will see in Section 6.1,

this property is necessary for application of our Cross-Checking technique.

Many models for concurrent systems (e.g., most process algebras) abstain

from synchronizations of more than two processes. The main reason for

this is that allowing such multi-party-synchronizations does not extend the

expressiveness, i.e., you can simulate multi-party-synchronizations by a se-

quence of pairwise synchronizations.

Interaction systems are similar to Lynch’s I/O automata [CCK+05, KLSV06],

Henzinger’s interface automata [AH01] and Arnold’s synchronous product of

labeled transition systems [Arn94], where Sifakis’ interactions correspond to

Arnold’s synchronization vectors. As to Arnold’s transition systems, there

are some minor syntactical differences, e.g., Arnold does not require the lo-

26 2.3 Interaction Systems

cal transition systems’ label sets to be disjoint but on the other hand his

synchronizations are not sets but vectors (compared to sets in interaction

systems), which means that the information which action belongs to which

local transition system is always available.

In Arnold’s synchronization vector syntax every transition system (syntacti-

cally) occurs in every synchronization, i.e., if it does not participate, there

is an additional null action e as a placeholder. However, as the resulting

blow-up is only linear in the number of components. It does not have any

effect on the complexity results or the techniques presented in this work.

While Arnold’s synchronous products of finite transition systems are very

similar to our notion of generalized interaction systems IS there is a larger

gap towards Sifakis’ original interaction systems ĨS which build a subclass

of IS by demanding some additional constraints.

2.3.1 Generalized Interaction Systems (IS)

A generalized interaction system is a tuple Sys = (K, {Ai}i∈K , Int, {Ti}i∈K),

where

• K is the set of components.

If not stated otherwise, we assume K = {1, . . . , n}. In general we

denote the number |K| of components by n.

• Ai is the set of ports resp. actions of component i ∈ K.

The port sets Ai are pairwise disjoint.

• Int = {α1, . . . , α|Int|} is the set of interactions .

An interaction α is a finite set of actions: α ⊆
⋃

i∈K Ai.

Each interaction α is subject to the constraint that for each component

i at most one action ai ∈ Ai is in α. Also every action must occur in

at least on interaction, i.e.,
⋃

i∈K Ai =
⋃

α∈Int α.

• Ti = (Qi, Ai,→i, q
0
i) is the finite local transition system of component

i ∈ K, where every state qi ∈ Qi must have at least one outgoing

2.3.1 Generalized Interaction Systems (IS) 27

transition. Let m denote the size of the largest local state space of a

component, i.e., m = maxi∈K |Qi|.

An interaction α = {ai1 , . . . , aik} with aij ∈ Aij describes that the compo-

nents i1, . . . , ik cooperate via these ports.

Remark 2.4

If we want to emphasize that we are talking about the component set K of

a certain interaction system we will refer to K by K[Sys]. However, if the

correspondence is clear from the context we will just write K. (We use the

analogous notation for the set Int.)

Definition 2.14

Given an interaction α ∈ Int and a component i ∈ K we denote by i(α) :=

Ai ∩ α the participation of i in α.

Remark 2.5

We will sometimes identify a singleton set {a} with the respective element a

it contains.

Definition 2.15

For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈

Qi, s.t. qi
ai→i q′i}. As mentioned above, we assume that the Ti’s are non-

terminating, i.e., ∀i ∈ K ∀qi ∈ Qi ea(qi) 6= ∅.

Definition 2.16

The global behavior TSys = (Q, Int,→Sys, q
0) of Sys (henceforth also re-

ferred to as global transition system) is obtained from the behaviors of the

individual components, given by the transition systems Ti, and the interac-

tions Int in a straightforward manner:

• The global state space Q =
∏

i∈K Qi is the Cartesian product (which

we consider to be order independent) of the local state spaces Qi. We

denote states by tuples (q1, . . . , qn) and call them global states.

28 2.3 Interaction Systems

• The relation →Sys ⊆ Q × Int × Q is defined by

∀α ∈ Int ∀q, q′ ∈ Q q = (q1, . . . , qn)
α
→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi

i(α)
→i q′i if i(α) 6= ∅ and q′i = qi otherwise).

• q0 = (q0
1 , . . . , q

0
n) is the global starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition

system when each component i participating in α is ready to perform i(α).

In this case we say that the interaction α is enabled.

Example 2.1

Let Sys = ({1, 2, 3}, {Ai}1≤i≤3, Int, {Ti}1≤i≤3), where A1 = {a1, b1}, A2 =

{a2, b2}, A3 = {a3, b3, d3}, Int = {{a1, a2, a3}, {b1, b2, b3}, {d3}, {b1, b2}} and

the local transition systems Ti are given in Figure 2.3.

T1:

q0
1

T2: T3:

q1
1

b1

a1a1

q0
2

q1
2

a2b2

q0
3

q1
3 q2

3

b3

a3

a3

d3

Figure 2.3: The local transition systems Ti of Example 2.1

Definition 2.17

Let the set IS consist of all possible generalized interaction systems as defined

above.

2.3.1 Generalized Interaction Systems (IS) 29

For the following definitions let Sys ∈ IS be an interaction system.

Definition 2.18

Given a global state q we say that a set of components D ⊆ K is a local

deadlock in q if every interaction in which any of the components in D could

(in its present local state) participate is blocked by some other component

in D.

More formally, D is a local deadlock in q if (D 6= ∅ and)

∀i ∈ D ∀α ∈ Int : (ea(qi) ∩ α 6= ∅) ⇒ (∃j ∈ D j(α) 6⊆ ea(qj)).

Remark 2.6

Informally, a local deadlock (D in q) as defined above is a situation where a

set D of components can never again participate in an interaction and where

the reason for this fact lies within D itself. As the notion of local deadlock

plays a central role in this thesis, we want to illustrate why Definition 2.18

coincides with this informal characterization:

Firstly, a situation where a component i can never again participate in an

interaction, can only arise due to i’s dependency on other components. We

ensured this by our definition of interaction systems, where we demanded that

every local state of a component must have at least one outgoing transition

(i.e., enable at least one action) and that every action must occur in at least

one interaction. Therefore, the fact that i is never again able to participate

in an interaction again implies that i is restricted by some other component.

Secondly, there may be situations when a set D of components is never again

able to participate in an interaction and where we still do not want to speak of

a deadlock situation, because the reason does not lie within D itself. Assume

a system with three components K = {i, j, k} that may initially perform an

arbitrary number of ternary synchronizations. At some point the components

i and j perform a binary synchronization and proceed to local states where

they can still perform binary synchronizations but henceforth exclude k. In

this case D = {k} can never again participate in an interaction but we do

not want to refer to this case by the notion of deadlock.

30 2.3 Interaction Systems

Definition 2.19

D ⊆ K is a minimal local deadlock in q if no proper subset of D is a local

deadlock in q.

Definition 2.20

We say that a state q ∈ Q contains a deadlock if a subset D ⊆ K is a

local deadlock in q.

We define the predicate DL on global states by DL(q) = true if q contains

a deadlock and DL(q) = false, otherwise.

Definition 2.21

We say that a system Sys contains a deadlock if some therein reachable state

q contains a deadlock. Otherwise we say that Sys is deadlock-free.

Definition 2.22

A global deadlock is a special case of a local deadlock, where D = K.

Remark 2.7

Obviously in a global state q for which some set D ⊆ K is a local deadlock in

q, no component in D can ever again participate in every interaction. Please

note that – according to Definitions 2.9, 2.21 and 2.22 – it is equivalent to

say that “Sys terminates” or “Sys contains a global deadlock”.

Definition 2.23

Given a trace t (or a run r) of the global transition system we say that an

interaction α occurs in t (respectively r), if α is performed at some point in

t (respectively r). We say that a component occurs in t (respectively r) if

some interaction α with i(α) 6= ∅ occurs in t (respectively r).

Definition 2.24

A component i ∈ K makes progress in Sys if it occurs infinitely often in

2.3.1 Generalized Interaction Systems (IS) 31

every run of Sys.

Remark 2.8

According to Definition 2.24 a component i makes progress in Sys iff there

is no reachable cycle in the behavior of Sys such that i does not occur in the

cycle. More formally:

i ∈ K makes progress iff

¬(∃q ∈ Reach(Sys) ∃k ∈ N ∃q1, . . . , qk ∈ Reach(Sys) ∃α1, . . . , αk+1 ∈ Int

q
α1→ q1 α2→ . . .

αk→ qk αk+1

→ q ∧ ∀1 ≤ l ≤ k + 1 i(αl) = ∅).

Definition 2.25

We say a component i ∈ K is live in Sys, if for every reachable state q

there is a way to continue performing interactions such that eventually an

interaction may be performed in which i participates. I.e., i is live if

∀q∈Reach(Sys) ∃q′, q′′∈Reach(Sys) ∃w∈Int∗ ∃α∈Int

q
w
→

∗
q′ ∧ q′

α
→ q′′ ∧ i(α) 6= ∅.

Definition 2.26

We say a component i ∈ K is available in Sys, if infinitely often some

interaction in which i participates is enabled in every run.

Remark 2.9

According to Definition 2.26, a component i is available in Sys iff there is

no reachable cycle in the global transition system of Sys such that none of

the states on the cycle enables an interaction in which i participates. This

observation is analogous to Remark 2.8 so we abstain from a formalization

here.

32 2.3 Interaction Systems

2.3.2 Original Interaction Systems (ĨS)

The notion of interaction system given above is a somewhat relaxed version

of the original definition that is presented in [GS03]. Here we provide the

original definition and refer to this class by ĨS.

When we defined our more general class IS, we found it convenient to straight-

forwardly define a set Int of allowed synchronizations. In the original defini-

tion from [GS03] there is however a distinction between two types of synchro-

nizations, namely connectors and complete interactions which are subject to

the following constraints:

• Let C = {c1, . . . , c|C|} be the connector set .

A connector ck (1 ≤ k ≤ |C|) is a finite set of actions ck ⊆
⋃

i∈K Ai.

Each connector ck is subject to the constraint that for each component

i at most one action ai ∈ Ai is in ck.

C is subject to the constraint that every action of every component

occurs in at least one connector of C and no connector contains any

other connector.

• Let C be a set of connectors . Let Comp = {α1, . . . , α|Comp|} be the

set of complete interactions.

Each αk ∈ Comp is a subset of some cl ∈ C.

Also, Comp has to be upwards-closed w.r.t. C, i.e.:

∀α ∈ Comp ∀c ∈ C : ((α ⊂ α′ ⊂ c) ⇒ α′ ∈ Comp).

The idea behind this distinction is that a connector provides the possibil-

ity for certain actions to communicate. In a hardware framework this can

be imagined as a physical connection between several components’ ports.

Assuming that a connector {a, b, c, d} implements a communication that re-

quires active participation of a, b, c and d, we might not want to allow the

synchronization as long as any of the actions a, b, c or d is not available.

However, assuming that a connector {a, b, c, d} contains sending a piece of

information (a) and receiving it (b, c, d) by three other components, we might

want to specify that sending should always be allowed, but receiving is only

2.3.2 Original Interaction Systems (ĨS) 33

possible if somebody sends information at the same time. So we want to

include, e.g., {a, d} (or even {a}) as a possible interaction. On the other

hand, this implies that an arbitrary number of listeners should be admitted

as long as the sending action occurs. So we specify all interactions α with

{a} ⊆ α ∧ α ⊆ {a, b, c, d} to be complete.

Definition 2.27

Let the set ĨS consist of all possible original interaction systems as defined

above.

Obviously, this yields (from a not too formal point of view) ĨS (IS, i.e.,

the abolition of these restrictions defines a strictly larger class of interaction

systems. However, for some systems in IS it is possible to split up Int and

give a valid definition of C and Comp.

Example 2.2

For the set Int given for Example 2.1, e.g., C = {{a1, a2, a3}, {b1, b2, b3}, {d3}}

and Comp = {{b1, b2}} would be sound w.r.t. Sifakis’ original definition.

To obtain a more convenient notation for our reductions in Chapter 5, we

define the following sets that we may interpret as decidability problems.

Definition 2.28

Reachability := {(Sys, q) | Sys ∈ ĨS and q ∈ Reach(Sys)}.

LDIS := {Sys ∈ ĨS |∃q ∈ Reach(Sys), s.t. DL(q)}.

GDIS := {Sys ∈ ĨS | ∃q ∈ Reach(Sys), s.t. q 6→}.

Progress := {(Sys, k) |Sys ∈ (ĨS \GDIS) and k ∈ K[Sys] makes progress in Sys}.

Availability := {(Sys, k) |Sys∈(ĨS \GDIS) and k ∈K[Sys] is available in Sys}.

Remark 2.10

The distinction between connectors and complete interactions has been made

mainly for the purpose of composing larger systems from subsystems. As this

34 2.3 Interaction Systems

compositional feature is of little interest to us, we have abolished this distinc-

tion together with the requirement of upwards-closedness of Comp w.r.t. C.

The main motivation for this relaxation is the decomposition of interaction

systems to subsystems in Chapter 6: Keeping to the original definition ĨS

would mean that the subsystems we build do not necessarily belong to the

class ĨS even though the part where they contradict the definition (i.e., the

upwards-closedness of Comp w.r.t. C) is irrelevant for the purpose of extract-

ing reachability information from them.

We find it important to remark that in all mappings in this work from (resp.

to) interaction systems we may always substitute ĨS with IS (resp. IS with

ĨS), i.e., it is always possible to gain the stronger result even if this variant

is not given explicitly.

• trans1: 1SN → ĨS in Section 3.1.1 already uses the smaller image space

ĨS

• trans2: IS → 1SN in Section 3.1.2 already applies to the larger range

IS.

• f1, . . . , f4 in Section 5.3 all map ĨS to ĨS. It is clear that the functions

could analogously be defined from IS to IS (but not from IS to ĨS).

This yields that our PSPACE-hardness results hold for the subclass ĨS while

our PSPACE-inclusion result given in Section 5.3.5 holds for the superclass

IS. This is graphically represented in Figure 1.3 by the fact that the PSPACE-

hardness-box and the PSPACE-inclusion-box are linked to the respective

classes.

2.4 Petri Nets 35

2.4 Petri Nets

2.4.1 General Petri Nets (PN)

A Petri net [CEP93] is a four-tuple N = (P, T, F, M0) such that:

• P and T are finite disjoint sets. Their elements are called places and

transitions, respectively.

• F ⊆ (P × T) ∪ (T × P). F is called the flow relation.

• M0 : P → N is called the initial marking of N .

Definition 2.29

For a Petri net N with a set of places P , we call a mapping M : P → N

a marking of N . We will also represent markings as multisets, where we

write (p, k) ∈ M (read: there are k instances of p in M) iff M(p) = k.

Definition 2.30

For places as well as transitions we define the notion of preset and postset:

For p ∈ P , preset(p) := {t ∈ T | (t, p) ∈ F},

postset(p) := {t ∈ T | (p, t) ∈ F}.

For t ∈ T , preset(t) := {p ∈ P | (p, t) ∈ F},

postset(t) := {p ∈ P | (t, p) ∈ F}.
For technical reasons, we only consider nets in which every node has a

nonempty preset or a nonempty postset.

Definition 2.31

Let N = (P, T, F, M0) be a Petri net. A transition t ∈ T is enabled under

a marking M if M(p) > 0 for every place p in the preset of t. Given a

transition t, we define the relation
t
→ as follows: M

t
→ M ′ if t is enabled

under M and for all s ∈ P we have M ′(s) = M(s) + F (t, s)− F (s, t), where

F (x, y) is 1 if (x, y) ∈ F and 0 otherwise. We say that the transition t is

performed at M .

36 2.4 Petri Nets

Definition 2.32

The global behavior T = (M, T,→, M0) of a net (henceforth also referred

to as global transition system) is obtained from the interplay of places and

transitions as follows:

• M is the set of all markings, i.e., the mappings from P to N. We also

call the markings global states and M the global state space.

• The relation → ⊆ M× T ×M is defined by

(M, t, M ′) ∈→ iff M
t
→ M ′.

• M0 ∈ M is the initial marking.

Remark 2.11

The semantics of a net as described in Definition 2.32 is often referred to

as “token game semantics”: For an intuitive understanding we can interpret

(for a marking M ∈ M, a place p ∈ P and k ∈ N) the terms M(p) = k

respectively (p, k) ∈ M as the fact that in the marking M , the place p

contains k so-called “tokens”. A transition then shuffles tokens from one

place to the other.

Example 2.3

The Petri net N1, is given in Figure 2.4. Transitions are represented by

squares and places by circles. A black dot in a place p represents the fact

that p contains one token.

The reachable markings4 of N1 are {{p1, p2, p3}, {p3, p4, p5}, {p1, p6}}.

2.4.2 1-safe Nets (1SN)

While general Petri nets are an infinite model (cf. Figure 1.2) it is a natural

idea to investigate subclasses that consist of finite instances. For this purpose

one may define (for k ∈ N) the set of k-safe nets that contains exactly those

4Remember that we identify markings with states of the global transition system for

which we have defined the notion of reachability in Definition 2.5.

2.4.2 1-safe Nets (1SN) 37

p1 p3

p4 p5

p2

t2 t3t1 t4

p6

Figure 2.4: A 1-safe net N1

Petri nets, where in every reachable marking, every place contains at most

k tokens. For this thesis we define the class of 1-safe Petri nets, which are a

well-studied computation model.

Definition 2.33

A marking M of a net N is called 1-safe, if for every place p of the net

M(p) ≤ 1. A net N is called 1-safe if all its reachable markings are 1-safe.

Definition 2.34

We define the class 1SN ⊆ PN of 1-safe Petri nets by

1SN := {N ∈ PN | ∀M ∈ Reach(N) M is 1-safe}. For a 1-safe net N =

(M, T,→, M0) we restrict M, i.e., the global state space of N , to the set of

mappings from P to {0, 1}. Thus, we can also refer to a marking M as a set,

where we write p ∈ M if M(p) = 1 and p /∈ M otherwise.

Let N = (P, T, F, M0) ∈ 1SN be a 1-safe net. Then the following questions

concerning N ’s behavior T = (M, T,→N , M0) are known to be PSPACE-

complete [CEP93].

Definition 2.35

The reachability problem for 1-safe nets consists of deciding, for a marking

38 2.4 Petri Nets

M of N , whether M0 →
∗
N M .

Definition 2.36

The liveness problem for 1-safe nets consists of deciding, whether every

transition can always occur again. More precisely, if for every reachable

marking M ∈ Reach(N) and every transition t ∈ T , there is some M ′ ∈ M

with M →∗
N M ′ and M ′ enables t.

Definition 2.37

The deadlock problem5 for 1-safe nets consists of deciding, whether every

reachable marking enables some transition. If this is the case we call the net

deadlock-free.

Example 2.4

N1, as defined in Example 2.3, is 1-safe, deadlock-free and live.

2.4.3 Communication-free Nets (CFN)

Although the class CFN does not occur in this thesis, we still want to mention

it for the sake of related work. From the concurrency point of view the

simplest Petri nets are those in which no transition has more than one ingoing

arc and thus no cooperation between places is needed to fire a transition.

Thus, all tokens flow through the net independently of each other. We call

the class consisting of these nets communication-free nets (CFN).

The class CFN is equivalent to Christensen’s basic parallel processes BPP

(cf. [CHM93]) and it is very difficult to program such a net to perform

any particular computation. Nevertheless, Hirshfeld (cf. [Hir94]) was able

to prove trace equivalence to be undecidable for communication-free nets

(cf. Figure 1.2) by applying a technique developed by Jancar (cf. [Jan94]).

5In analogoy to our definitions for interaction systems, we would call this deadlock

global. This is analogous to saying that the behavior of the net terminates.

2.5 The Linda Calculus 39

We mention these results, because they inspired our encodings of Minsky

machines in interaction system which we present in Chapter 4.

2.5 The Linda Calculus

In this section we give a short introduction to coordination languages in

general and then turn to the Linda language and the Linda calculus LinCa.

A Coordination Language is a language specifically defined to allow two or

more parties (components) to communicate for the purpose of coordinating

operations to accomplish some shared (computation) goal. Linda seems to

be the best known Coordination Language.

A Linda process may contain several parallel subprocesses that communi-

cate via a so called Tuple Space. The Tuple Space is some kind of global

store, where pieces of information (represented by tuples) are stored. Imple-

mentations of tuple spaces have been developed for Smalltalk, Java (Java-

Spaces), Python, Ruby, TCL, Lua, Lisp, Prolog and the .NET framework (cf.

[YSR09]). Ciancarini, Jensen and Yankelevich [CJY95] defined LinCa, the

Linda calculus, and along with it both single-step and multi-step semantics.

In Linda, a tuple is a vector consisting of variables and/or constants, and

there is a matching relation that is similar to data type matching in common

programming languages. For the purpose of investigating the properties of

the coordination through the Tuple Space, it is common practice to ignore

the matching relation and internal propagation of tuples. Tuples are dis-

tinguished from each other by giving them unique names (t1, t2, t3, ...) and

LinCa is based on a Tuple Space that is countably infinite. As far as the

semantics for LinCa is concerned, the traditional interleaving point of view

does not make any assumptions about the way concurrent actions are per-

formed, i.e., for any number of processing units and independently of their

speed, all possible interleavings of actions are admitted. On the other hand,

the traditional multi-step point of view allows actions to be carried out con-

currently or interleaved.

40 2.5 The Linda Calculus

Apart from the standard interleaving and multi-step semantics, we are going

to introduce a multi-step semantics, where we demand maximum progress

in every transition, i.e., additional actions must be performed in the present

step if possible. In other words, we consider only maximal (w.r.t. set inclu-

sion) sets of actions for each transition. We motivate this semantics by the

following example.

Example 2.5

Let us assume a system6, in which a number of workers (processes) have to

perform different jobs (calculations) on some object (tuple). In a setting with

a common clock for all processes and where the workers’ calculations (plus

taking up the object) can always be finished within one clock cycle, we would

(for maximum efficiency) want the systems semantics to represent the actual

proceeding as follows: All workers are idle while the foreman supplies an

object. The foreman waits while all workers read the object simultaneously

and perform their jobs (by processing their respective copy of the data object)

in the consecutive clock cycle. All workers put their results into the tuple

space simultaneously while the foreman deletes the object, and so on.

2.5.1 LinCa

2.5.1.1 Syntax

LinCa processes:

Note that by Tuple Space (or TS in short), we denote the basic set from

which tuples are chosen and by a Tuple Space configuration, we refer to the

state of our store in the present computation, i.e., a Tuple Space configuration

is a multiset over the Tuple Space. In order to show some properties of the

various semantics that are introduced in the next section, we will add some

designated tuples to TS. We will denote these extra tuples by c, d, e and we

will write TScde for TS ∪ {c, d, e}, where TS ∩ {c, d, e} = ∅.

6We will define this system more formally later in this chapter (cf. Example 2.6).

2.5.1 LinCa 41

Definition 2.38

Given a fixed Tuple Space TS, we can define the set of LinCa processes

LinCaTS as the set of processes derived from the grammar given in Figure 2.5,

where every time we apply one of the rules P := in(t).P , P := out(t).P ,

P := rd(t).P or P :=! in(t).P , t is substituted by an element of the Tuple

Space. in(t), out(t) and rd(t) are called actions. If t ∈ {c, d, e} then they

are called internal actions, else observable actions. Trailing zeros (.0) will be

dropped in examples.

P := 0 | in(t).P | out(t).P | rd(t).P | P | P | ! in(t).P

Figure 2.5: LinCa

Remark 2.12

The rule P := ! in(t).P will be interpreted as the possibility to run an

arbitrary number of parallel processes in(t).P . We refer to the !-operator by

replication. As a counter-part to recursion, replication is used to feature

infinite behavior (i.e., in a process calculus that uses neither of the concepts,

no process can diverge, in terms of our notions defined in Section 2.2). Please

note that in LinCa, replication is in-guarded, i.e., in order to invoke another

parallel process P by replication, we will have to perform a deleting read

operation on a tuple t of the tuple space.

This fact is essential for our multi-step semantics: With only a finite number

of tuples in the tuple space at every point of time, we will never be able to

replicate an infinite number of parallel processes in one step.

Definition 2.39

Let P be a LinCa-process. Then ea(P) denotes the multiset of enabled ac-

tions of P , which are defined in Figure 2.6. We define a decomposition of (the

42 2.5 The Linda Calculus

1) ea(0) = ∅

2) ea(in(t).P) = {in(t)}

3) ea(out(t).P) = {out(t)}

4) ea(rd(t).P) = {rd(t)}

5) ea(! in(t).P) = {(in(t),∞)}

6) ea(P | Q) = ea(P)] ea(Q)

Figure 2.6: The set of enabled actions ea(P) of a process P ∈ LinCa

eaIN(P) = {(t, i) | (in(t), i) ∈ ea(P)}

eaOUT (P) analogously

eaRD(P) analogously

Figure 2.7: The sets eaIN(P), eaOUT (P), eaRD(P) of a process P ∈ LinCa

tuples occuring in) ea(P) into three subsets eaIN(P), eaOUT (P), eaRD(P) as

given in Figure 2.7. The notions (in(t),∞) ∈ ea(P) and (t,∞) ∈ eaIN (P)

describe the fact, that infinitely many actions in(t) are enabled in P . These

notions will only be used for enabled actions, never for Tuple Space configu-

rations, because (due to the in-guardedness of replication, cf. Remark 2.12)

all computed Tuple Space configurations remain finite.

In the following, we define three different semantics for LinCa processes. As

for the hitherto introduced models, we will use a labeled transition system for

this purpose, where for either semantics we will present a different definition

for the transition relation. In these transition systems, states are pairs <

P, M > of LinCa-processes and Tuple Space configurations and transition

labels are triples (I, O, R) of (possibly empty) multisets of tuples, where I

represents the performed in-actions, O the performed out-actions and R the

performed rd -actions. We write τ instead of (I, O, R) iff I, O, R ∈ ℘({c, d, e})

and call τ an internal label and a transition q
τ
→ q′ an internal transition. A

2.5.1 LinCa 43

label a = (I, O, R) 6= τ is called an observable label and a transition q
a
→ q′

is called an observable transition.

Definition 2.40

Let SEM ∈ {ITS, MTS, MTS-mp}, denote the interleaving, the multistep

and the multistep with maximum progress semantics for LinCa. The global

behavior SEM [P] = (Q, L,→SEM , q0) of a LinCa process P under SEM is

obtained from the parallel processes operating on their shared storage, the

tuple space, as follows.

• Q = LinCaTS × ℘(TS). We also call these pairs global states and the

set of all such pairs the global state space.

• L = ℘(TS) × ℘(TS) × ℘(TS).

• The relations →SEM are definied in the following section.

• q0 =< P, ∅ >

2.5.1.2 Semantics

In this section, we introduce the ITS-semantics for LinCa based on the

semantics given in [BGLZ05b] and a MTS-semantics that we consider the

natural extension of ITS. In the given MTS-semantics, we allow (in con-

trast to [CJY95]) an arbitrarily large number of rd -actions to be performed

simultaneously on a single instance of a tuple.

To describe the various semantics, we split the semantic description into two

parts: A set of rules for potential transitions of LinCa-processes (Figures 2.8

and 2.10) and an additional rule to establish the semantics in which we check

if some potential transition is allowed under the present Tuple Space config-

uration (Figures 2.9, 2.11 and 2.13), respectively. This allows us to reuse

the rules in Figure 2.8 (henceforth called pure syntax rules) for the succeed-

ing MTS and MTS-mp semantics. Choosing this representation makes it

convenient to point out common features and differences of the discussed

semantics.

44 2.5 The Linda Calculus

1) in(t).P
({t},∅,∅)
→ P

2) out(t).P
(∅,{t},∅)
→ P

3) rd(t).P
(∅,∅,{t})
→ P

4) ! in(t).P
({t},∅,∅)
→ P | ! in(t).P

5) P
(I,O,R)
→ P ′

P | Q
(I,O,R)
→ P ′ | Q

Figure 2.8: ITS: pure syntax (symmetrical rule for 5 omitted)

P
(I,O,R)
→ P ′ ∈ ITS-Rules I⊆M R⊆M

<P,M>
(I,O,R)
→ ITS <P ′,(M\I)]O>

Figure 2.9: ITS

In contrast to [BGLZ05b] we label transitions. We have to do so to record

which actions a step-transition performs in order to check if this is possible

under the present Tuple Space configuration. The labels serve as a link

between the rules of pure syntax and the semantic rule: For a potential

transition P
(I,O,R)
→ P ′ the multisets I, O and R contain the tuples on which we

want to perform in, out, respectively rd actions. In MTS (see Figure 2.11),

such a potential transition is only valid for some Tuple Space configuration

M , if I] set(R) ⊆ M , i.e., M includes enough instances of each tuple to

satisfy all performed in-actions and at least one additional instance for the

performed rd-actions on that tuple (if any rd-actions are performed). For

out-actions there is no such restriction.

In Figure 2.13 we use the notion of maximality of a potential transition for

some Tuple Space configuration M . Maximality is given iff conditions 1)

and 2) in Figure 2.12 hold, where the first condition means, that all enabled

out-actions have to be performed, whereas the second condition means, that

as many of the in and rd-actions as possible have to be performed. More

precisely 2.1) represents the case, that the number of instances of some tuple

2.5.1 LinCa 45

ITS-Rules 1) - 5) (from Figure 2.8)

6) ! in(t).P
({(t,i)},∅,∅)

→
∏

i

P | ! in(t).P

7)
P

(IP ,OP ,RP)
→ P ′ Q

(IQ,OQ,RQ)
→ Q′

P | Q
(IP]IQ,OP]OQ,RP]RQ)

→ P ′ | Q′

Figure 2.10: MTS: pure syntax

P
(I,O,R)
→ P ′ ∈ MTS-Rules (I]Set(R))⊆M

<P,M>
(I,O,R)
→ MTS <P ′,(M\I)]O>

Figure 2.11: MTS

t in the present Tuple Space configuration M exceeds the number of enabled

in-actions on that tuple. In this case all in-actions and all rd-actions have

to be performed. We define the relations →ITS, →MTS and →MTS-mp as

the smallest relations satisfying the corresponding rule in Figure 2.9, 2.11

and 2.13.

Example 2.6

We end this section by formally modeling Example 2.5 (p. 40). A foreman

supplies a group of workers with jobs.

Let P := foreman | worker1 | ... | workern, where:

foreman = out(object).wait.in(object).foreman

workeri = rd(object).out(resulti).workeri

(Please note that wait-operator is used for ease of notation only, it is not

part of the discussed language but can easily be simulated.)

Ciancarini’s original MTS semantics would allow P to evolve in a variety of

ways. However, given a common clock and given that all workers can per-

46 2.6 Minsky Machines

1) (t, i) ∈ eaOUT (P) ⇒ (t, i) ∈ O

∧ 2) (t, i) ∈ M ∧ (t, j) ∈ eaIN(P) ∧ (t, k) ∈ eaRD(P) ⇒

(2.1) j < i ∧ (t, j) ∈ I ∧ (t, k) ∈ R

∨ 2.2) j ≥ i ∧ (t, i) ∈ I ∧ (t, 0) ∈ R

∨ 2.3) j ≥ i ∧ (t, i − 1) ∈ I ∧ (t, k) ∈ R ∧ k ≥ 1)

Figure 2.12: Condition for Maximality of a transition P
(I,O,R)
→ P ′ for some

Tuple Space configuration M

P
(I,O,R)
→ P ′∈MTS-Rules P

(I,O,R)
→ P ′ is maximal for M

<P,M>
(I,O,R)
→ MTS-mp <P ′,(M\I)]O>

Figure 2.13: MTS-mp

form their rd-operations (as well as their internal calculation which we ab-

stract from in LinCa) within one clock cycle, the expected/desired maximum-

progress behavior of P (that has already been described in the introduction)

corresponds to the (in this case deterministic) behavior of MTS-mp[P].

2.6 Minsky Machines

A Minsky machine (or random access machine) M̂ [SS63] consists of m reg-

isters, that may store arbitrarily large natural numbers and a program (i.e.,

sequence of n enumerated instructions) of the form:

I1

I2

...

In

2.6 Minsky Machines 47

Each instruction Ii can either be a successor instruction that increments a

register and continues with the next instruction or a decrease/jump instruc-

tion that decreases a register or jumps to a designated instruction if the value

of the register is already zero. We denote each instruction (for 1 ≤ j ≤ m,

s ∈ N) by

a) i : Succ(rj), respectively

b) i : DecJump(rj , s)

Finally, a tuple c0 =< v1, v2, ..., vm, k >∈ Nm+1 serves as the starting config-

uration of M̂ .

Definition 2.41

The global behavior T = (Q, I,→, c0) of a Minsky machine M̂ represents

the deterministic behavior as follows.

• Q is the set of all configurations for M̂ , where a configuration of M̂ is

represented by a tuple < v1, v2, ..., vm, k >∈ Nm+1, where vi represents

the value stored in register ri and k is the number of the instruction

that is to be computed next.

We also call these tuples global states and the set of all such tuples the

global state space.

• The label set I = {I1, . . . , In} is given by the instructions of M̂ .

• Let c =< v1, v2, ..., vm, k > be the present configuration of M̂ . Then we

distinguish the following three cases to describe the possible transitions:

1) k > n means that M̂ halts, because the instruction that should be

computed next does not exist. This happens after computing instruc-

tion In and passing on to In+1 or by simply jumping to a nonexistent

instruction.

2) if k ∈ {1, ..., n} ∧ Ik = Succ(rj) then vj and k are incremented,

i.e., we increment the value in register rj and proceed with the next

instruction.

3) if k ∈ {1, ..., n} ∧ Ik = DecJump(rj, s) then M̂ checks whether the

48 2.7 Equivalences

value vj of rj is > 0. If this is the case, we decrement it and proceed

with the next instruction (i.e., we increment k). Else (i.e., if vj = 0)

we simply jump to instruction Is, (i.e., we assign k := s).

For the cases 2) and 3) let (c, Ik, c
′) ∈→, where c′ is the configuration

that we receive if we perform the described modifications on c.

We say a Minsky machine M̂ with starting configuration < v1, v2, ..., vm, k >

terminates if its computation reaches a configuration that belongs to case 1).

If such a configuration is never reached, the computation never stops and

we say that M̂ diverges. This coincides with our notions of termination and

divergence presented in Section 2.2. Due to the determinism in a Minsky

machine’s behavior, it will always either terminate or diverge.

It is well-known [Min67] that the question whether a Minsky machine diverges

or terminates under the starting configuration < 0, ..., 0, 1 > is undecidable

for the class MM of all Minsky machines.

2.7 Equivalences

As already described in the introduction, the main purpose of formal methods

is to formally describe a system on a mathematic level in order to reason

about its properties. Equivalences are a very important notion in this matter:

We often want to decide whether two systems (which might be different

abstractions of the same implementation) behave “the same way” on a certain

level of detail. Depending on the level of abstraction, the aspects one wants

to focus on and last but not least the aim one is pursuing one may define

a variety of different equivalences. In this work, we consider well-known

equivalences, namely bisimilarity, trace equivalence and isomorphism as well

as equivalences that we define for our own specific purposes, namely weak

2.7.1 Bisimilarity 49

step simulation and a somewhat relaxed notion of isomorphism.

2.7.1 Bisimilarity

Let Ti = (Qi,Lab,→i, q
0
i), i ∈ {1, 2} be two labeled transition systems using

the same label set.

A relation RB ⊆ Q1 × Q2 is a bisimulation if ∀(q1, q2) ∈ RB the following

two conditions hold:

1) q1
l
→1 q′1 ⇒ ∃q′2 ∈ Q2 q2

l
→2 q′2 ∧ (q′1, q

′
2) ∈ RB.

2) q2
l
→2 q′2 ⇒ ∃q′1 ∈ Q1 q1

l
→1 q′1 ∧ (q′1, q

′
2) ∈ RB.

We call two transition systems T1 and T2 bisimilar (denoted by T1 ∼ T2) iff

there exists a bisimulation RB with (q0
1, q

0
2) ∈ RB.

2.7.2 Trace Equivalence

Let Ti = (Qi,Lab,→i, q
0
i), i ∈ {1, 2} be two labeled transition systems using

the same label set.

We call T1 and T2 trace equivalent iff Traces(T1) = Traces(T2).

2.7.3 Weak Step Simulation

Let T1 = (Q1, Lab1,→1, q
0
1) and T2 = (Q2, Lab2,→2, q

0
2) be two labeled tran-

sition systems. We write T1 � T2 iff the following properties hold:

1) T1 and T2 are trace equivalent.

2) Sys2 is able to weakly simulate Sys1, i.e., ∃R ⊆ Q1 × Q2 such that:

2.1) (q0
1 , q

0
2) ∈ R and

2.2) (q1, q2) ∈ R ∧ q1
a
→ q′1 ⇒ ∃q′2 ∈ Q2 : q2

a
→

+
q′2 ∧ (q′1, q

′
2) ∈ R.

50 2.7 Equivalences

2.7.4 Isomorphism

We define the notion of isomorphism, which we use to establish a relation

between transition systems that use different label sets Lab1 and Lab2.

Let Ti = (Qi,Labi,→i, q
0
i), i ∈ {1, 2} be two labeled transition systems.

We say that T1 and T2 are isomorphic (T1
∼= T2) iff there exist bijective

functions f : Q1 → Q2 and g : Lab1 → Lab2, such that f(q0
1) = q0

2 and

∀q1, q
′
1 ∈ Q1, l1 ∈ Lab1, q2, q

′
2 ∈ Q2, l2 ∈ Lab2 the following two conditions

hold:

1) q1
l1→1 q′1 ⇒ f(q1)

g(l1)
→ 2 f(q′1).

2) q2
l2→2 q′2 ⇒ f−1(q2)

g−1(l1)
→ 1 f−1(q′2).

2.7.5 Isomorphism up to a Label Relation R

We define a modified notion of isomorphism, which we use to establish a re-

lation between transition systems that use different label sets Lab1 and Lab2

if the transition systems are not isomorphic to each other. R then defines

which labels in Lab1 we want to correspond to which labels in Lab2.

Let Ti = (Qi,Labi,→i, q
0
i), i ∈ {1, 2} be two labeled transition systems.

Given a label relation R ⊆ (Lab1 × Lab2), that relates labels of Lab1 to la-

bels of Lab2, we say that T1 and T2 are isomorphic up to R (T1
∼=R T2)

iff there exists a bijective function f : Q1 → Q2, such that f(q0
1) = q0

2 and

∀q1, q
′
1 ∈ Q1, l1 ∈ Lab1, q2, q

′
2 ∈ Q2, l2 ∈ Lab2 the following two conditions

hold:

1) q1
l1→1 q′1 ⇒ ∃l2 ∈ Lab2, s.t. (l1, l2) ∈ R ∧ f(q1)

l2→2 f(q′1).

2) q2
l2→2 q′2 ⇒ ∃l1 ∈ Lab1, s.t. (l1, l2) ∈ R ∧ f−1(q2)

l1→1 f−1(q′2).

2.7.5 Isomorphism up to a Label Relation R 51

Remark 2.13

As already mentioned in Remark 2.1, we will, for ease of notation, often

identify a system with its behavior. Hence, we will call two systems equivalent

(in any of the above defined meanings) iff the labeled transition systems that

are induced by their semantics are equivalent.

Chapter 3

Mappings

In this chapter, we present mappings between some of the models for con-

currency that we introduced in Chapter 2. We do so in order to establish

a relation between the models (respectively the semantics) and to compare

them with respect to expressiveness.

We start out with the contribution that has the greatest impact on our

studies, namely a translation from 1-safe nets to interaction systems. This

translation is computable in polynomial time (and as a consequence does

not yield an exponential blow-up) and it preserves reachability. Therefore, it

allows us to deduce from the PSPACE-hardness of reachability in 1-safe nets

(cf. [CEP93]) that reachability in interaction systems is also PSPACE-hard

to decide.

Then we present a translation for the opposite direction, i.e., from inter-

action systems to 1-safe nets. This translation assures that the respective

global transition systems of an interaction system and its corresponding net

are isomorphic up to a label relation. However, the translation may yield

an exponential blow-up. This blow-up is unavoidable to assure the desired

relation, as will be seen in the consecutive sections, where we consider other

translations from interaction systems to 1-safe nets. We show that there is

53

54 3.1 Interaction Systems and 1-safe Nets

no translation that yields bisimilarity. We also show that isomorphism up to

a label relation cannot be acquired with a polynomial mapping.

In the second part of this chapter, we discuss the relation between LinCaITS,

respectively LinCaMTS and the semantics LinCaMTS-mp that requires maxi-

mum progress. We give a transformation1 from LinCaITS to LinCaMTS-mp

and from LinCaMTS to LinCaMTS-mp, respectively, such that a process can

be weakly step simulated by its image process, i.e., they are trace equivalent

and the MTS-mp semantics is able to weakly simulate the other semantics.

3.1 Interaction Systems and 1-safe Nets

In this section we establish a relation between the model of interaction sys-

tems and the well-studied model of 1-safe Petri nets for which complexity

results have been investigated in [CEP93]. We show that anything described

by a 1-safe net can be described by an interaction system without a blow-up

in notation. Similarly, interaction systems can be translated into 1-safe nets.

However, it is unavoidable to have a (worst case) exponential blow-up for

this translation.

The results with the greatest impact are PSPACE-hardness of the prob-

lems of reachability and liveness for interaction systems. These are the first

PSPACE-hardness results concerning interaction systems and they partially2

outrun the complexity results given in [Min07]. The established results pro-

vide an essential basis for Section 5.3, where we use these “master-reductions”

1We find it convenient to refer to these mappings as transformations (rather than

translations) because we do not map from one syntax to another.
2In [Min07] we prove NP-hardness of local and global deadlock. While our translation

from 1SN to IS yields PSPACE-hardness for global deadlock, it does not outrun the result

given for local deadlocks.

3.1.1 Translating 1-safe Nets to Interaction Systems 55

to extend the PSPACE-hardness results (by polynomial reductions) to almost

all behavioral questions for interaction systems.

Furthermore, these results suggest that there is no polynomial time algorithm

for solving the questions of reachability or liveness in interaction systems.

Thus, they provide further motivation for approaches to establish algorithms

that test properties of interaction systems in polynomial time by avoiding

state space explosion. In Chapter 6 we will see that the model of interaction

systems is particularly suited for applying these approaches because they

exploit local information about components, whose identities are preserved

when being composed. Petri nets, by contrast, lack compositionality and the

identity of a component is lost when a composite system is modeled as a

Petri net.

3.1.1 Translating 1-safe Nets to Interaction Systems

In this section we define a mapping trans1 : 1SN → ĨS from 1-safe nets to

interaction systems in such a way that a 1-safe net N and its image trans1(N)

are isomorphic.

Idea and Explanation:

Let N = (P, T, F, M0) be a 1-safe net. We introduce a component p̂ for each

place p ∈ P . The transition system Tp̂ has only two states, one state qf
p̂ to

reflect the fact that p is full (i.e., it contains a token) and one state qe
p̂ to

reflect that it is empty (i.e., it does not contain a token). For the events

represented by the arcs in N we introduce actions in order to refer to them

in trans1(N). For the transitions t adjacent to p we distinguish three cases:

a) t ∈ (preset(p) \ postset(p)). When such a transition is performed in N ,

this means that p is empty before the performance of t and contains a

56 3.1 Interaction Systems and 1-safe Nets

p

t1 t2 t3

t4 t5

qe
p̂

qf
p̂

a(p,t4) a(t1,p)a(p,t5) a(t2,p) a(t3,p)

(a) (b)

t6

a(t6,p,t6)

Figure 3.1: A place with ingoing and outgoing transitions and its correspond-

ing component

token afterwards. Thus, we introduce an edge from qe
p̂ to qf

p̂ labeled by

the action a(t,p).

b) t ∈ (postset(p) \ preset(p)). When such a transition is performed in N ,

this means that p contains a token before the performance of t and is

empty afterwards. Thus, we introduce an edge from qf
p̂ to qe

p̂ labeled

by the action a(p,t).

c) t ∈ (preset(p) ∩ postset(p)). This means there has to be a token in p

to perform t which will still be contained afterwards. In this case, we

introduce a loop at qf
p̂ labeled by the action a(t,p,t).

For an example of a place with pre- and postset and its corresponding com-

ponent, see Figure 3.1 (a) resp. (b). (Note that only transitions adjacent to

p are depicted.) Now we define a connector c(t) for each transition t. For

the places adjacent to t we do again distinguish three cases:

a) p ∈ (preset(t)\postset(t)). This means that in order to perform t, there

3.1.1 Translating 1-safe Nets to Interaction Systems 57

has to be a token in p, and there will be no token in p after performing

t. Thus, we include the action a(p,t) in c(t) which already occurs in the

component p̂ in such a way that this fact is perfectly reflected.

b) p ∈ (postset(t) \ preset(t)). This means that in order to perform t,

there must not to be a token in p, and there will be a token in p after

performing t. Thus, we include the action a(t,p) in c(t) which already

occurs in the component p̂ in the corresponding way.

c) p ∈ (preset(t) ∩ postset(t)). This means that in order to perform t,

there has to be a token in p, and p will still contain one token after

performing t. Thus, we include the action a(t,p,t) in c(t) which already

occurs in the component p̂ in the corresponding way.

For an example of a transition with pre- and postset, respectively its corre-

sponding connector, see Figure 3.23 (a) respectively (b).

Finally, let C := {c(t) | t ∈ T} and Comp := ∅.

t

p1 p2 p3

p4

c(t) = {a(p1,t), a(p2,t), a(t,p3,t), a(t,p4)}

(b)(a)

Figure 3.2: A transition with its pre- and postset and its corresponding

connector

3Note that only places adjacent to t are depicted.

58 3.1 Interaction Systems and 1-safe Nets

Formal definition:

Let N ∈ 1SN, then trans1(N) = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, where

K := {p̂ | p ∈ P}

For p̂ ∈ K : Ain
p̂ := {a(t,p) | t ∈ (preset(p) \ postset(p))},

Aout
p̂ := {a(p,t) | t ∈ (postset(p) \ preset(p))},

Ainout
p̂ := {a(t,p,t) | t ∈ (preset(p) ∩ postset(p))}, and

Ap̂ := Ain
p̂ ∪ Aout

p̂ ∪ Ainout
p̂ .

T p̂ := ({qe
p̂, q

f
p̂}, Ap̂,→p̂, q

0
p̂), where Ap̂ has already been given,

→p̂ := {(qe
p̂, a(t,p), q

f
p̂) | a(t,p) ∈ Ain

p̂ }

∪ {(qf
p̂ , a(p,t), q

e
p̂) | a(p,t) ∈ Aout

p̂ }

∪ {(qf
p̂ , a(t,p,t), q

f
p̂) | a(t,p,t) ∈ Ainout

p̂ }

q0
p̂ := qe

p̂ if M0(p) = 0 and q0
p̂ := qf

p̂ if M0(p) = 1.

In order to define a connector for a transition in a natural way we now relate

the actions in
⋃

i∈K Ai to the transitions in the way described informally

above.

For t ∈ T : Ain
t := {a(p,t) | p ∈ (preset(t) \ postset(t))},

Aout
t := {a(t,p) | p ∈ (postset(t) \ pretset(t))},

Ainout
t := {a(t,p,t) | p ∈ (preset(t) ∩ postset(t))}

c(t) := Ain
t ∪ Aout

t ∪ Ainout
t

C := {c(t) | t ∈ T}

Comp := ∅

It remains to prove that C is indeed a sound connector set.

We observe that {Asup
t | t ∈ T, sup ∈ {in, out, inout}} is a disjoint decom-

position of
⋃

i∈K Ai. This is due to the fact that the sets Asup
t are defined

3.1.1 Translating 1-safe Nets to Interaction Systems 59

qe
p̂1

qf
p̂1

a(t1,p1)a(p1,t2)

qe
p̂2

qf
p̂2

a(t1,p2)a(p2,t2)

qe
p̂3

qf
p̂3

a(t4,p3)a(p3,t3)

qe
p̂4

qf
p̂4

a(t2,p4)a(p4,t1)

qe
p̂5

qf
p̂5

a(t2,p5)a(p5,t1)

qe
p̂6

qf
p̂6

a(t3,p6)a(p6,t4)

a(p3,t2,p3)

a(t4,p2)a(p2,t3)

T1 : T2 : T3 :

T4 : T5 : T6 :

Figure 3.3: The local transition systems Ti for trans1(N)

inversely to the sets Asup
p̂ . Thus, C, which is obtained from that disjoint

decomposition by taking the union of some of the subsets, is still a disjoint

decomposition of
⋃

i∈K Ai. Thereby, we may conclude that all connectors

consist of actions in
⋃

i∈K Ai and each action occurs exactly once, i.e., in at

least one connector, and no connector can be a subset of another connector.

Also, as Comp = ∅, we have upwards-closedness of Comp w.r.t. C.

Example 3.1

Let N = (P, T, F, M0) be the 1-safe net from Example 2.3 (p. 36). The

corresponding interaction system is trans1(N) ={{1, . . . , 6}, {Ai}1≤i≤6, C,

∅, {Ti}1≤i≤6}, where C = {{a(p4,t1), a(p5,t1), a(t1,p1), a(t1,p2)}, {a(p1,t2), a(p2,t2),

a(t2,p4), a(t2,p5), a(p3,t2,p3)}, {a(p2,t3), a(p3,t3), a(t3,p6)}, {a(p6,t4), a(t4,p3), a(t4,p2)}},

and the local transition systems Ti (and implicitly the port sets Ai) are given

in Figure 3.3.

60 3.1 Interaction Systems and 1-safe Nets

Theorem 3.1

Let N ∈ 1SN and Sys = trans1(N).

We define f : M → Q by f(M) = q with q(p̂) = qf
p̂ if p ∈ M and q(p̂) = qe

p̂

otherwise.

Further let g : T → C be defined by g(t) := c(t) as given above.

Then, N ∼= Sys, i.e., N is isomorphic to Sys.

Proof: Clear by construction of trans1.

Due to Theorem 3.1 we can clearly answer the question of reachability of

a marking M in a 1-safe net by computing trans1(N) in polynomial time

and answering whether f(M) ∈ Reach(trans1(N)). So we deduce, from the

PSPACE-hardness of reachability in 1SN (cf. [CEP93]) PSPACE-hardness

of reachability in ĨS as stated in the following corollary.

Corollary 3.1

The Reachability problem for (original) interaction systems is PSPACE-hard.

We also know that the question of liveness for 1-safe nets, i.e., the question

whether every transition can always occur again in the behavior of a net N ,

is PSPACE-hard [CEP93].

As liveness in 1-safe nets concerns transitions (cf. Definition 2.36, p. 38),

which are translated to interactions, and, by contrast, liveness in interaction

systems concerns components (cf. Definition 2.25, p. 31), we introduce a

place pt for each transition t, such that the component corresponding to the

place, i.e., p̂t will be live iff t can always occur again. This can be done by

employing a (polynomial) preencoding mappre on N before applying trans1.

More formally, let mappre(N) = (P ∪ {pt | t ∈ T}, T, F ∪ {(pt, t), (t, pt) | t ∈

T}, M0 ∪ {pt | t ∈ T}).

Now N is live iff every p̂t (t ∈ T) is live in trans1(mappre(N)). As a con-

3.1.2 Translating Interaction Systems to 1-safe Nets 61

sequence, we deduce PSPACE-hardness of liveness in (original) interaction

systems as stated in the following corollary.

Corollary 3.2

The Liveness problem for (original) interaction systems is PSPACE-hard.

3.1.2 Translating Interaction Systems to 1-safe Nets

In this section we define a mapping trans2 : IS → 1SN from generalized

interaction systems to 1-safe Petri nets in such a way that an interaction

system Sys and its image trans2(Sys) are isomorphic up to a label relation

RL.

Idea and Explanation:

In this section, we present the encoding from interaction systems to 1-safe

nets. Our interest in such a translation is mainly based on the theoretical

point of view, i.e., we want to obtain a more profound understanding of the

capabilities of these two models. Still, as interaction systems are a relatively

young model for which so far not many tools have been developed, there is

some practical benefit: One could translate a system into a net and apply

Petri net tools in order to investigate behavioral questions of the system.

Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) ∈ IS be an interaction system. We

introduce a place q̂i for each local state qi ∈ Qi of each component i ∈ K.

A global state of Sys is a tuple that consists of the current local states of

the components. Thus, for every reachable marking in N , there will for each

i ∈ K always be exactly one place q̂i that contains a token. A token in q̂i

reflects the fact that qi is the current state of component i.

It remains to translate the glue code given by the interactions in Int to the

notion of transition in Petri nets. An action ai ∈ Ai may occur multiple times

62 3.1 Interaction Systems and 1-safe Nets

in the local transition system Ti of component i. Thus, the performance of

an interaction α may cause different state changes in Sys.

As a consequence, we are going to map an interaction α not to a single

transition but to a set of transitions T (α). Each transition in T (α) represents

one of these possible global state changes and will shift the tokens in N

according to the local state changes that are caused for the components that

participate in α.

Formal definition:

trans2(Sys) = (P, T, F, M0), where

P =
⋃

i∈K{q̂i | qi ∈ Qi}.

For α = {ai1 , ai2, . . . , aik} ∈ Int, we introduce a set of transitions

T (α) := {{(qi1, ai1 , q
′
i1
), . . . , (qik , aik , q

′
ik

)} | ∀1 ≤ j ≤ k(qij , aij , q
′
ij
) ∈→ij}.

Then we define

T =
⋃

α∈Int T (α).

For each α and each transition t = {(qi1 , ai1, q
′
i1
), . . . , (qik , aik , q

′
ik

)} in T (α)

we introduce arcs as follows:

F (t) = {(q̂i1 , t), . . . , (q̂ik , t)} ∪ {(t, q̂′i1), . . . , (t, q̂
′
ik

)}

F (α) =
⋃

t∈T (α) F (t).

F =
⋃

α∈Int F (α).

M 0 = {q̂i ∈ P | qi = q0
i }.

This means that in the initial marking exactly those places that correspond

to the local starting states of the components contain a token.

Remark: Let Ti be the local transition system of component i and let

ai ∈ Ai be an action of i. We denote the number of occurrences of ai

in Ti by occ(ai). Note that for one interaction α = {ai1 , . . . , aik} there are

occ(ai1) · . . . · occ(aik) instances of α. This means we might have exponen-

tially (in n) many instances for a single interaction α, which will result in

3.1.2 Translating Interaction Systems to 1-safe Nets 63

q̂0
1

q̂1
1

q̂0
2

q̂1
2

q̂0
3

q̂1
3

{b1, b2}1 {b1, b2, b3}1{a1, a2, a3}2 {a1, a2, a3}1 {a1, a2, a3}4

q̂2
3

{a1, a2, a3}3

{d3}1

Figure 3.4: The corresponding 1-safe Petri-net trans2(Sys)

an exponential blow-up in our mapping from interaction systems to 1-safe

nets. See, e.g., Example 2.1 (p. 28), where we get occ(a1) · occ(a2) · occ(a3)

= 2 · 1 · 2 = 4 transitions for the interaction {a1, a2, a3} in T ({a1, a2, a3}).

Example 3.2

Let Sys be the interaction system from Example 2.1 (p. 28). The corre-

sponding net trans2(Sys) is given in Figure 3.4. For better readability we use

the following abbreviations:

{a1, a2, a3}1 := {(q0
1, a1, q

1
1), (q

0
2, a2, q

1
2), (q

0
3, a3, q

1
3)},

{a1, a2, a3}2 := {(q0
1, a1, q

1
1), (q

0
2, a2, q

1
2), (q

1
3, a3, q

0
3)},

{a1, a2, a3}3 := {(q1
1, a1, q

0
1), (q

0
2, a2, q

1
2), (q

0
3, a3, q

1
3)},

{a1, a2, a3}4 := {(q1
1, a1, q

0
1), (q

0
2, a2, q

1
2), (q

1
3, a3, q

0
3)}.

{b1, b2, b3}1 := {(q1
1, b1, q

1
1), (q

1
2, b2, q

0
2), (q

2
3, b3, q

0
3)}.

{d3}1 := {(q1
3, d3, q

2
3)} and {b1, b2}1 := {(q1

1, b1, q
1
1), (q

1
2, b2, q

0
2)}.

64 3.1 Interaction Systems and 1-safe Nets

Theorem 3.2

Let Sys ∈ IS and N = trans2(Sys).

We define f : Q → M by f(q1, . . . , qn) = {q̂1, . . . , q̂n}.

Further let RL =
⋃

α∈Int({α} × T (α)).

Then, Sys ∼=RL
N, i.e., Sys is isomorphic up to RL to N .

Proof: Clear by construction of trans2.

3.1.3 Considering other Relations between IS and 1SN

In Sections 3.1.1 and 3.1.2, we discussed mappings between interaction sys-

tems and 1-safe nets. Particularly, the relation we established by the transla-

tion trans2 : IS → 1SN in the previous section, and that yielded isomorphism

up to a 1-to-many relabeling was rather tailored to our purpose. This makes

it a legitimate question to ask what other relations could be conceived, es-

pecially taking into account that our translation included an exponential

blow-up. We will in the following answer the questions:

• As we allow for an exponential blow-up anyway, would it not be possible

to give a translation from IS to 1SN that establishes bisimilarity or

even an isomorphism between the respective global transition systems?

• Would it not be possible to give a polynomial translation that yields

the relation that is established here (bisimilarity or even isomorphism

up to a 1-to-many relabeling)?

The answer to either question is “no” as we will show in the following sub-

sections.

3.1.3 Considering other Relations between IS and 1SN 65

3.1.3.1 The Gap between Interaction Systems and 1-Safe Nets

There is no translation from IS to 1SN that yields bisimilarity between the

respective global behaviors. The reason for this fact becomes obvious when

we consider the following simple example of an interaction system:

Example 3.3

Let Sys = (K, {Ai}i∈K , C, Comp, {Ti}i∈K), where

K = {1, 2}, C = {α1, α2}, α1 = {a1, a2}, α2 = {b1, b2}, Comp = ∅ and the

local behaviors of 1 and 2 are given in Figure 3.5.

T1:

a1

a1

b1

T2:

a2

a2

b2

Sys :

α1

α1

α2

Figure 3.5: The local transition systems Ti and the global behavior Sys of

Example 3.3

The global behavior of this system is given in Figure 3.5. A bisimilar 1-

safe net must have two transitions (α1 and α2) and α1 must be performable

exactly twice from the net’s initial marking. In 1-safe nets, however, a transi-

tion t that can be executed two times successively can be executed arbitrarily

often successively, because the preset of t must be included in the postset of

t in order to allow for successive execution.

66 3.2 The various Semantics of the Linda Calculus

3.1.3.2 Considering a polynomial Version of trans2

With trans2 we gave an exponential translation from IS to 1SN. One might

ask whether it is possible to give a polynomial translation that yields the

relation that is established by trans2. To prove that this is indeed impossible

we show that there is generally no polynomial translation that yields an

isomorphism for the unlabeled versions of the respective global behaviors.

Let us consider the following parametrized example of an interaction system.

Example 3.4

Let Sysn = (Kn, {Ai}i∈Kn
, Cn, Compn, {Ti}i∈Kn

), where:

Kn = {1, . . . , n}, Cn = {{a1, . . . , an}}, Compn = ∅ and the local behaviors

Ti are given in Figure 3.6.

The underlying unlabeled graph of the global behavior of this system is

called (in graph theory terminology) K2n . It has 2n states and 22n edges

(cf. Figure 3.6). Let N be a 1-safe net whose unlabeled global behavior is

isomorphic to K2n. For any marking M there must be 2n different transitions

enabled as for each node there are 2n outgoing edges with pairwise different

successor states. However, the existence of 2n different transitions clearly

implies that N can not be polynomial in n.

3.2 The various Semantics of the Linda Calculus

In Section 2.5 we defined different types of semantics for the Linda Calculus,

namely ITS, MTS and MTS-mp. Here, we discuss the relationships between

the semantics by taking a closer look at the respective behavior they imply

for a LinCa process P . In order to do so, we establish transformations that

augment a LinCa process by certain auxiliary actions that allow us to sim-

3.2 The various Semantics of the Linda Calculus 67

T1:

a1 a1

a1

a1

T2:

a2 a2

a2

a2

. . .

Tn:

an an

an

an

Sys :

1 2

3

4

56

7

2n

Figure 3.6: The local transition systems Ti and the global behavior Sys of

Example 3.4

ulate one semantics by another. We express our considerations in terms of

trace equivalence and weak step simulation (cf. Section 2.7).

To begin with, we formulate the following straight-forward observations that

concern the subgraph-relations between the global transition systems.

• ITS [P] is always a subgraph of MTS [P], as the pure syntax rules for

ITS (cf. Figure 2.8) are a subset of those for MTS (cf. Figure 2.10)

and the way the semantics (cf. Figures 2.9 and 2.11) build on the pure

syntax rules is the same.

68 3.2 The various Semantics of the Linda Calculus

• MTS-mp[P] is always a subgraph of MTS [P], as the pure syntax rules

for MTS and MTS-mp are the same but for the MTS-mp semantics

(cf. Figure 2.13) we apply a stronger precondition than for the MTS

semantics (cf. Figure 2.11).

By LinCacde we denote the LinCa language based on an extended Tuple

Space. That is, we assume the existence of three designated tuples c,d,e that

are not elements of the original LinCa Tuple Space. We extend our MTS-

mp semantics to treat actions on these tuples just like any other actions in

the purely syntactic description. However, in transition systems whenever

(I, O, R) consists of nothing but designated tuples we replace it by τ , the

internal label. Whenever some internal actions are performed concurrently

with some observable actions, the label of the resulting transition will simply

consist of the observable ones.

By MTS-mp[P] where P ∈ LinCacde we denote the semantics of P as de-

scribed above.

3.2.1 Translating LinCaITS to LinCaMTS-mp

In this subsection we define an encoding trans3: LinCa → LinCacde and

prove that ITS [P] � MTS-mp[trans3(P)] holds. The presented encoding

artificially sequentializes processes by initially writing one instance of the

designated tuple c into the tuple space and surrounds every original action

with an enclosing pair in(c) and out(c). Thus, at most one action is enabled

at every point of time.

The formal definition of trans3 consists of a recursive definition encITS, finally

composed with the prefix out(c):

encITS(0) = 0

3.2.1 Translating LinCaITS to LinCaMTS-mp 69

encITS(act(t).P) = in(c).act(t).out(c).enc(P)

encITS(P | Q) = enc(P) | enc(Q)

encITS(! in(t).P) = ! in(c).in(t).out(c).enc(P)

trans3(P) = out(c).encITS(P)

Theorem 3.3

ITS[P] � MTS-mp[trans3(P)]

Proof:

1) Weak Similarity

encITS(P) puts a prefix in(c) in front of and a suffix out(c) behind every

action in P . The weak step simulation deterministically starts by performing

the internal action out(c) and subsequently simulates every step of the ITS

Transition System by performing three steps as follows:

First, we remove the guarding in(c)-prefix which is produced by the encoding

from the observable action we want to simulate (henceforth, we call this

unlocking an action). Then we perform this action. Finally, we perform the

suffix out(c) to supply the Tuple Space configuration with the tuple c for the

simulation of the next action. As all described steps are indeed maximal, the

transitions are valid for MTS-mp.

2) Equality of Traces

Traces(ITS[P]) ⊆ Traces(MTS -mp[trans3(P)]) follows immediately from

weak similarity. As for the reverse inclusion: MTS-mp[trans3(P)] can ei-

ther unlock an action that can be performed under the present Tuple Space

configuration. In this case, ITS[P] can perform the same action directly.

MTS-mp[trans3(P)] could also unlock an action that is blocked under the

present Tuple Space configuration. In this case the computation (and thus

the trace) halts due to the total blocking of the process trans3(P) (as the

70 3.2 The various Semantics of the Linda Calculus

single instance of tuple c has been consumed without leaving an opportunity

to provide a new one). However, the hitherto observed trace also exists in

ITS[P].

3.2.2 Translating LinCaMTS to LinCaMTS-mp

In this subsection, we define an encoding trans4: LinCa → LinCacde and

prove that MTS [P] � MTS-mp[trans4(P)] holds. The presented encoding

tweaks a given process P in such a way, that the maximum progress require-

ment of the MTS-mp semantics is discarded. For this purpose, we prefix

every original action of P with the action in(c) and rely on an additional

process Q to produce an arbitrary number of instances of the tuple c. As a

result, any number k of actions can be performed in parallel by producing

exactly k instances of c first.

The formal definition of trans4 consists of a recursive definition encMTS,

composed with Q and an initial out(c):

Firstly, we introduce the recursive encoding encMTS: LinCa → LinCacde,

that simply prefixes every action of a process with an additional blocking

in(c) action.

encMTS(0) = 0

encMTS(act(t).P) = in(c).act(t).encMTS(P)

encMTS(P | Q) = encMTS(P) | encMTS(Q)

encMTS(! in(t).P) = ! in(c).in(t).encMTS(P)

Secondly, we introduce the process Q. All actions performed by Q are internal

actions, and Q will be able to produce an arbitrary number of instances of

the tuple c simultaneously.

3.2.2 Translating LinCaMTS to LinCaMTS-mp 71

We define: Q := ! in(d).[rd(e).out(c) | out(d)]

| ! in(d).out(e).wait.in(e).wait.out(d)

Remark 3.1

Strictly speaking, the wait-operator used in Q is not included in LinCa. We

nevertheless use it because a wait-action (which has no effect on the rest

of the process and is not observable) can be implemented by a rd-action in

the following way: Let t∗ be a designated tuple that is not used for other

purposes. If P is a LinCa-process except for the fact, that it may contain

some wait-actions, then we consider it as the process P [wait/rd(t∗)] | out(t∗).

Additionally, we want to point out that the wait-actions are not essential for

the correctness of the encoding trans4. They only keep things synchronized

for ease of proofs and understanding.

Finally, we define trans4(P) := encMTS(P) | Q | out(d). The parallel process

out(d) puts a tuple d into the initially empty Tuple Space configuration to

activate the process Q.

Theorem 3.4

MTS[P] � MTS-mp[trans4(P)]

Proof:

1) Weak similarity

The proof is similar to the one of Theorem 3.3. Whenever we want to simulate

some step < P, M >
(I,O,R)
→ MTS< P ′, M ′ > (where |I|+ |O|+ |R| = z) Q first

produces z processes rd(e).out(c) by subsequently performing z times in(d)

and out(d) in line 1 of Q. Then, line 2 of Q is performed, i.e., the tuple

e is provided and then simultaneously read by the z rd(e).out(c)-processes

(and deleted by in(e) immediately afterwards). This causes the simultaneous

production of z instances of c, which are used to unlock the desired actions in

72 3.2 The various Semantics of the Linda Calculus

encMTS(P) in the subsequent step. As the step we want to simulate is valid

in MTS and as all other actions (besides the second internal wait-action of

Q that is in fact performed simultaneously) are still blocked by their prefixes

in(c), the step is also maximal and thus it is valid in MTS-mp.

2) Equality of Traces

Again, Traces(MTS[P]) ⊆ Traces(MTS−mp[trans4(P)]) follows immedi-

ately from weak similarity. We give a sketch of the proof of the reverse

inclusion:

The process Q finds itself in a “loop” in which it continuously produces

arbitrary numbers of instances of the tuple c (let the number of produced

c-tuples be z). In the subsequent step (due to our maximality-request) as

many actions in(c) as possible are performed. The actual number of these

unlockings is restricted either by the number of enabled in(c) processes (let

this number be x, i.e., (c, x) ∈ eaIN(encMTS(P))) if x ≤ z or by the number

of instances of c that we have produced if x > z.

In the next step, we perform as many unlocked actions as possible. That

might be all of them, if the present Tuple Space configuration M allows for

it, or a subset of them. In any of those cases, the same set of actions can

instantly be performed in MTS[P]. It simply remains to show that neither

the over-production of c-tuples, nor the unlocking of more actions than we

can simultaneously perform under M will ever enable any observable actions

that are not already enabled in MTS[P].

The proof for this proposition is straightforward and can be done by defining

a relation S that includes all pairs (< P, M >, < trans4(P), M] {d} >) as

well as any pair (< P, M >, q′) where q′ is a derivation from < trans4(P), M]

{d} > by τ -steps. Based on S, we can show, that whenever (q1, q2) ∈ S and

q2 performs an observable step in MTS-mp[trans4(P)], q1 will be ready to

3.2.2 Translating LinCaMTS to LinCaMTS-mp 73

imitate it in MTS[P]. For an example that displays this analogy between P

under LinCaMTS and trans4(P) under LinCaMTS-mp see Appendix A.1.

Chapter 4

Undecidability

In this chapter, we present undecidability results for LinCa under the MTS-

mp semantics. We derive these results from the class MM of Minsky ma-

chines, for which the problem of termination is known to be undecidable

[Min67]. For this purpose, we present property-preserving translations from

MM to LinCaMTS−mp. In contrast to the mappings presented in Chapter 3,

the ones presented here are to a much smaller degree generic and rather

result-oriented. In other words, we do not aim at a close relation between

states of the systems’ behaviors and their respective outgoing transitions.

Instead, we confine with preserving the respective property of interest.

4.1 Overview

The expressive power of the Linda calculus and its dialects has been thor-

oughly discussed by Bravetti et al. [BGZ00, BGLZ05a]. In standard LinCa,

termination is decidable [BGLZ05a] by defining an encoding of LinCa sys-

tems into finite Petri nets that preserves the existence of a finite computation

and by exploiting the fact that the deadlock problem is decidable [Reu90] in

finite Petri nets.

75

76 4.1 Overview

On the other hand, PrioLinCa (a dialect of LinCa that features priorization)

can be proven to be Turing complete by a Minsky machine encoding, even

with the use of only two types of priorities. As a consequence, termination

and divergence are undecidable for PrioLinCa.

There exist LinCa-dialects that include a predicative in-operator inp(t)?P Q,

that has the semantical meaning “if t ∈ TS then P else Q” (cf. [BGM00]).

It has been shown [BGZ00] that the questions of termination and divergence

are undecidable for such dialects, as for any Minsky machine there is an ob-

vious deterministic encoding (i.e., these dialects, like PrioLinCa, are even

Turing complete).

However, the original Linda calculus [CJY95] that we discuss here does not

include such an operator which makes the proof that neither termination nor

divergence are decidable under the MTS-mp semantics more difficult. Given

a Minsky machine M̂ , we will assign to M̂ a LinCa process P . While the

behavior of M̂ is deterministic, the MTS-mp-behavior of P features non-

determinism. That is, in contrast to the transition system for M̂ , the transi-

tion system for P contains branchings. While one of the paths in the behavior

of P imitates the behavior of M̂ , there will be other paths that compute some-

thing “useless”. The trick is to prevent useless computations from messing

up the result of the Minsky machine imitation. We will define encodings term

and div that map Minsky machines to LinCa-processes such that a Minsky

machine M̂ terminates (respectively diverges) iff the corresponding transi-

tion system MTS-mp[term(M̂)] (respectively MTS-mp[div(M̂)]) terminates

(respectively diverges).

Remark 4.1

Whenever a process P (respectively its behavior) performs a nondeterministic

choice, there will be one transition describing the simulation of M̂ and one

4.2 Termination is undecidable in MTS-mp-LinCa 77

transition that will compute something useless. For ease of explanations in

Sections 4.2 and 4.3, we call the first type right and the second type wrong.

To guarantee that the part of the transition system that is reached by a wrong

transition (that deviates from the simulation) does not affect the question of

termination (respectively divergence), we will make sure that all traces of the

corresponding subtree are infinite (respectively finite). This approach guar-

antees that the whole transition system terminates (respectively diverges)

iff the single computation sequence that we obtain by keeping to the right

transitions is finite (respectively infinite).

Our encodings establish a natural correspondence between Minsky machine

configurations and Tuple Space configurations, i.e., the Minsky machine-

configuration < v1, v2, ..., vm, k > belongs to the Tuple Space configuration

{(r1, v1), ..., (rm, vm), pk}. For a Minsky machine configuration c we refer to

the corresponding Tuple Space configuration by TS(c).

4.2 Termination is undecidable in MTS-mp-LinCa

Let term: MM → LinCa be the following mapping:

term(M̂) =
∏

i∈{1,...,n}

[Ii] | ! in(div).out(div) | in(loop).out(div) | out(p1)

where the encoding [Ii] of a Minsky machine-Instruction in LinCa is:

[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)

[i : DecJump(rj, s)] = ! in(pi).[out(loop) | in(rj).in(loop).out(pi+1)]

| ! in(pi).[in(rj).out(loop)

| wait.wait.out(rj).in(loop).out(ps)]

Note that the first (deterministic) step of term(M̂) will be the initial out(p1).

78 4.2 Termination is undecidable in MTS-mp-LinCa

The resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For

ease of notation, we will henceforth also denote the above defined process

where out(p1) has already been executed by term(M̂).

Theorem 4.1

For every Minsky machine M̂ the transition system MTS-mp[term(M̂)] ter-

minates iff M̂ terminates under starting configuration < 0, ..., 0, 1 >.

Proof: To prove Theorem 4.1 we describe (given some Minsky machine

M̂ and configuration c) the possible transition sequences from some state

< term(M̂), TS(c) > in MTS-mp[term(M̂)] by three cases:

In cases 1 and 2, the computation in our transition system is completely

deterministic and performs the calculation of M̂ . In case 3, the transition

sequence that simulates DecJump(rj,s) includes nondeterministic choice. As

already mentioned, performing only right choices (cases 3.1.1 and 4.1.1) re-

sults in an exact simulation of M̂ ’s transition c →M̂ c′, i.e., the transition

sequence leads to the corresponding state < term(M̂), TS(c′) >. Performing

at least one wrong choice (cases 3.1.2, 3.2, 4.1.2 and 4.2) causes the subpro-

cess ! in(div).out(div) to be activated, thus assuring that any computation

in the corresponding subtree diverges (denoted by). In this case, other

subprocesses are not of concern because they cannot interfere by removing

the tuple div, so we substitute these subprocesses by “...”.

1. k > n, i.e., M̂ has terminated. Then < term(M̂), TS(c) > is totally

blocked.

2. k ∈ {1, ..., n} ∧ Ik = k : Succ(rj), then M̂ increments both rj and k.

The corresponding transition sequence in MTS-mp[term(M̂)] is:

4.2 Termination is undecidable in MTS-mp-LinCa 79

<term(M̂), TS(c)>

→ <term(M̂) | out(rj).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | out(pk+1), TS(c) \ {pk}] {rj}>

→ <term(M̂), TS(c) \ {pk}] {rj, pk+1}>

= <term(M̂), TS(c′)>

3. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj , s) ∧ vj 6= 0, then M̂ decre-

ments rj and increments k. The possible transition sequences in MTS-

mp[term(M̂)] are: <term(M̂), TS(c)>
nondet.
→

3.1 right :

<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj}] {loop}>
nondet.
→

3.1.1 right - right:

<term(M̂) | out(pk+1), TS(c) \ {pk, rj}>

→ <term(M̂), TS(c) \ {pk, rj}] {pk+1}>

= <term(M̂), TS(c′)>

3.1.2 right - wrong:

<term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj}] {loop}>

→ <... | out(div), TS(c) \ {pk, rj}>

3.2 wrong :

<term(M̂) | in(rj).out(loop) |

wait.wait.out(rj).in(loop).out(ps), TS(c) \ {pk}>

→ <term(M̂) | out(loop) | wait.out(rj).in(loop).out(ps), TS(c) \ {pk, rj}>

→ <term(M̂) | out(rj).in(loop).out(ps), TS(c) \ {pk, rj}] {loop}>

→ <... | out(div), TS(c) \ {pk}>

80 4.2 Termination is undecidable in MTS-mp-LinCa

4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj, s) ∧ vj = 0,

then M̂ assigns k := s

<term(M̂), TS(c)>
nondet.
→

4.1 right:

→<term(M̂) | in(rj).out(loop) |

wait.wait.out(rj).in(loop).out(ps), TS(c) \ {pk}>

→<term(M̂) | in(rj).out(loop) | wait.out(rj).in(loop).out(ps), TS(c)\{pk}>

→<term(M̂) | in(rj).out(loop) | out(rj).in(loop).out(ps), TS(c) \ {pk}>

→<term(M̂) | in(rj).out(loop) | in(loop).out(ps), TS(c) \ {pk}] {rj}>

→<term(M̂) | out(loop) | in(loop).out(ps), TS(c) \ {pk}>

→<term(M̂) | in(loop).out(ps), TS(c) \ {pk}] {loop}>
nondet.
→

4.1.1 right - right:

<term(M̂) | out(ps), TS(c) \ {pk}>

→ <term(M̂), TS(c) \ {pk}] {ps}>

= <term(M̂), TS(c′)>

4.1.2 right - wrong:

<... | out(div), TS(c) \ {pk}>

4.2 wrong:

<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}] {loop}>

→ <... | out(div), TS(c) \ {pk}>

4.3 Divergence is undecidable in MTS-mp-LinCa 81

4.3 Divergence is undecidable in MTS-mp-LinCa

Let div: MM → LinCa be the following mapping:

div(M̂) =
∏

i∈{1,...,n}

[Ii] | in(flow) | out(p1)

where the encoding [Ii] of a Minsky machine instruction in LinCa is:

[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)

[i : DecJump(rj, s)] = ! in(pi).in(rj).out(pi+1)

| ! in(pi). [in(rj).out(flow)

| wait.wait.out(rj).in(flow).out(ps)]

Note that the first (deterministic) step of div(M̂) will be the initial out(p1).

The resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For

ease of notation, we will henceforth also denote the above defined process

where out(p1) has already been executed by div(M̂).

Theorem 4.2

For every Minsky machine M̂ the transition system MTS-mp[div(M̂)] di-

verges iff M̂ diverges under starting configuration < 0, ..., 0, 1 >.

Proof: To prove Theorem 4.2 we describe (given some Minsky machine

M̂ and configuration c) the possible transition sequences from some state

< div(M̂), TS(c) > in MTS-mp[div(M̂)]. In cases 1 and 2, the computa-

tion in our transition system is completely deterministic and performs the

calculation of M̂ . We omit these cases because they are analogous to the

corresponding steps in Section 4.2. In case 3, the transition sequence that

simulates DecJump(rj,s) includes nondeterministic choice. As described in

82 4.3 Divergence is undecidable in MTS-mp-LinCa

Section 4.1, performing only right choices (cases 3.1 and 4.1.1) results in

an exact simulation of M̂ ’s transition c →M̂ c′, i.e., the transition sequence

leads to the corresponding state < div(M̂), TS(c′) >. Performing at least one

wrong choice (cases 3.2, 4.1.2 and 4.2) causes the tuple flow to be removed

from the Tuple Space configuration, thus leading to some state < P, M >

where P is totally blocked under M , denoted by < P, M > 6→.

3. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj, s) ∧ vj 6= 0, then M̂ decrements

rj and increments k. The possible transition sequences in

MTS-mp[div(M̂)] are:

<div(M̂), TS(c)>
nondet.
→

3.1 right:

<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}>

→ <div(M̂) | out(pk+1), TS(c) \ {pk, rj}>

→ <div(M̂), TS(c) \ {pk, rj}] {pk+1}>

= <div(M̂), TS(c′)>

3.2 wrong:

<div(M̂) | in(rj).out(flow) |

wait.wait.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk, rj}>

→ <div(M̂) | out(rj).in(flow).out(ps), TS(c) \ {pk, rj}] {flow}>

→ <Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> 6→

4.3 Divergence is undecidable in MTS-mp-LinCa 83

4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj, s) ∧ vj = 0, then M̂ assigns k := s

<div(M̂), TS(c)>
nondet.
→

4.1 right:

<div(M̂) | in(rj).out(flow) |

wait.wait.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(rj).out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(rj).out(flow) | out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(rj).out(flow) | in(flow).out(ps), TS(c) \ {pk}] {rj}>

→ <div(M̂) | out(flow) | in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(flow).out(ps), TS(c) \ {pk}] {flow}>
nondet.
→

4.1.1 right - right:

<div(M̂) | out(ps), TS(c) \ {pk}>

→ <div(M̂), TS(c) \ {pk}] {ps}>

= <div(M̂), TS(c′)>

4.1.2 right - wrong:

<Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> 6→

4.2 wrong:

<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}> 6→

Chapter 5

Complexity

5.1 Overview

In this chapter, we consider complexity issues for interaction systems. We

start out with a reduction of the classic 3-SAT problem to local, respectively

global deadlock in interaction systems. This result, as published in [Min07],

was to the best of our knowledge the first one concerning complexity is-

sues of interaction systems. Then we present an exact classification of the

problems of reachability, local and global deadlock, progress and availability

in interaction systems by proving them all to be PSPACE-complete. The

PSPACE-hardness results are based on the function trans1 (cf. Section 3.1.1)

that yields PSPACE-hardness for reachability in interaction systems. We

then extend this result by a chain of reductions to the problems mentioned

above and prove that the last problem in this reduction chain is in PSPACE.

5.2 Reducing 3-SAT to LDIS and GDIS

In interaction systems, (local) deadlocks may arise where a group of com-

ponents is engaged in a cyclic waiting and will thus no longer participate in

the progress of the global system. We show that deadlock-detection is NP-

85

86 5.2 Reducing 3-SAT to LDIS and GDIS

hard by encoding the classic 3-SAT problem [GJ79] to (deadlock detection

for) interaction systems. For this purpose, we apply two ideas: First, we en-

sure that in all situations where a deadlock arises, a global deadlock arises1.

Second, the components we introduce for a clause of a 3-CNF formula will

always be able to participate in some interaction while the clause evaluates

to false. So at the time a deadlock occurs, no further interactions can be

performed and, i.e., no clause evaluates to false.

Let F = k1∧ . . .∧kn with ki = (l(i,1) ∨ l(i,2) ∨ l(i,3)) be a propositional formula

in 3-CNF, where l(i,1), l(i,2) and l(i,3) are positive literals (i.e., variables) or

negative literals (i.e., negated variables).

In the following, we construct an interaction system Sys(F), such that

(F ∈ 3-SAT) ⇔ (Sys(F) ∈ GDIS) ⇔ (Sys(F) ∈ LDIS).

We represent each clause ki by a component (i, 0) and each literal l(i,j) by a

component (i, j). By i + 1 we mean i + 1, if 1 ≤ i ≤ n − 1 and 1 if i = n.

Let Sys(F) = (K, {A(i,j)}(i,j)∈K , C,Comp, {T(i,j)}(i,j)∈K), where:

K = {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ 3}.

A(i,0) = {init(i,0), false(i,0)} for 1 ≤ i ≤ n

A(i,j) = {init (i,j), set-to-1 (i,j), set-to-0 (i,j), true(i,j), false(i,j)} for

1 ≤ i ≤ n and 1 ≤ j ≤ 3

C := {{init(i+1,0), init(i,1), init(i,2), init(i,3)} | 1 ≤ i ≤ n}

∪ {{set-to-1 (i1,j1), set-to-1 (i2,j2), . . . ,set-to-1 (ia,ja)} |

∃ variable x that occurs in l(i1,j1), . . . , l(ia,ja) and only there}

∪ {{set-to-0 (i1,j1), set-to-0 (i2,j2), . . . , set-to-0 (ia,ja)} |

∃ variable x that occurs in l(i1,j1), . . . , l(ia,ja) and only there}

1Remember that a global deadlock is a special case of a local deadlock. This also means

that we reduce 3-Sat to both local and global deadlock analysis.

5.2 Reducing 3-SAT to LDIS and GDIS 87

∪ {{false(i,0), false(i,1), false(i,2), false(i,3)} | 1 ≤ i ≤ n}

∪ {{true(i,j), init(i+1,0)} | 1 ≤ i ≤ n, 1 ≤ j ≤ 3}

Comp = ∅

The local transition systems T(i,0) for 1 ≤ i ≤ n are given in Figure 5.1 (a).

The local transition systems T(i,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ 3 where l(i,j) is a

positive (resp. negative) literal are given in Figure 5.1 (b) (resp. (c)).

We call components (i, 0) clause-components and components (i, j) with 1 ≤

j ≤ 3 literal-components. For a component (i, j) we call the state qf

(i,j) its

false-state and, if it exists, the state qt
(i,j) its true-state. We call both qt

(i,j)

and qf

(i,j) local final states. We call a global state q ∈ Q global final state, if

all components are in local final states in q.

Remark 5.1

There is a natural 1-to-1-correspondence between assignments and reachable

global final states:

An assignment σ for F corresponds to the global final state qend := state(σ),

where all clause-components are in their false-states (they have no other

local final state) and any literal-component (i, j) that represents a literal of

variable x with σ(x) = 1 (σ(x) = 0) is in the local final state that is reachable

by the set-to-1-action (by the set-to-0-action).

A global final state qend that is in fact reachable starting in q0 (i.e., all literal-

components for the same variable have been set conjointly) corresponds to

the assignment σ := ass(qend), where for each variable x, σ(x) = 1 (σ(x) = 0)

if the literal-components in which x occurs are in their local final states that

are reached by the set-to-1-action (by the set-to-0-action).

Example 5.1

Let F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3).

F is satisfiable, namely σ(F) = 1 for σ(x1) = 1, σ(x2) = 1, σ(x3) = 0.

Consider the corresponding interaction system Sys(F) = (K, {Ai}i∈K , C,

88 5.2 Reducing 3-SAT to LDIS and GDIS

q0
(i,0)

qf

(i,0)

false(i,0)

q0
(i,j)

q1
(i,j)

qt
(i,j) qf

(i,j)

true(i,j) false(i,j)

init (i,j)

set-to-1 (i,j) set-to-0 (i,j)

(a) (b) (c)

q0
(i,j)

q1
(i,j)

qf

(i,j)
qt
(i,j)

false(i,j) true(i,j)

init (i,j)

set-to-1 (i,j) set-to-0 (i,j)

init(i,0)

Figure 5.1: The local transition systems T(i,j) for clause-components (a) and

positive and negative literal-components (b) and (c)

{Ti}i∈K), where K = {(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), . . . , (3, 3)} and the port

sets {Ai}i∈K as well as the local transition systems {Ti}i∈K are given in Fig-

ure 5.2.

C := {{init(2,0), init(1,1), init(1,2), init(1,3)}, {init(3,0), init(2,1), init(2,2), init(2,3)},

{init(1,0), init(3,1), init(3,2), init(3,3)}}

∪ {{set-to-1 (1,1), set-to-1 (2,1), set-to-1 (3,1)},

{set-to-1 (1,2), set-to-1 (2,2), set-to-1 (3,2)},

{set-to-1 (1,3), set-to-1 (2,3), set-to-1 (3,3)}}

∪ {{set-to-0 (1,1), set-to-0 (2,1), set-to-0 (3,1)},

{set-to-0 (1,2), set-to-0 (2,2), set-to-0 (3,2)},

{set-to-0 (1,3), set-to-0 (2,3), set-to-0 (3,3)}}

∪ {{false(1,0), false(1,1), false(1,2), false(1,3)},

{false(2,0), false(2,1), false(2,2), false(2,3)},

{false(3,0), false(3,1), false(3,2), false(3,3)}}

∪ {{true(1,1), init(2,0)}, {true(1,2), init(2,0)}, {true(1,3), init(2,0)},

{true(2,1), init(3,0)}, {true(2,2), init(3,0)}, {true(2,3), init(3,0)},

5.2 Reducing 3-SAT to LDIS and GDIS 89

q0
(1,0)

qf

(1,0)

false(1,0)

q0
(1,1)

q1
(1,1)

qt
(1,1) qf

(1,1)

true(1,1) false(1,1)

init (1,1)

set-to-1 (1,1) set-to-0 (1,1)

(1, 0) : (1, 1) : (1, 2) :

q0
(1,2)

q1
(1,2)

qf

(1,2)
qt
(1,2)

false(1,2) true(1,2)

init (1,2)

set-to-1 (1,2) set-to-0 (1,2)

q0
(1,3)

q1
(1,3)

qt
(1,3) qf

(1,3)

true(1,3) false(1,3)

init (1,3)

set-to-1 (1,3) set-to-0 (1,3)

(1, 3) :

q0
(2,1)

q1
(2,1)

qf

(2,1)
qt
(2,1)

false(2,1) true(2,1)

init (2,1)

set-to-1 (2,1) set-to-0 (2,1)

(2, 0) : (2, 1) : (2, 2) :

q0
(2,2)

q1
(2,2)

qt
(2,2) qf

(2,2)

true(2,2) false(2,2)

init (2,2)

set-to-1 (2,2) set-to-0 (2,2)

q0
(2,3)

q1
(2,3)

qf

(2,3)
qt
(2,3)

false(2,3) true(2,3)

init (2,3)

set-to-1 (2,3) set-to-0 (2,3)

(2, 3) :

q0
(3,1)

q1
(3,1)

qf

(3,1)
qt
(3,1)

false(3,1) true(3,1)

init (3,1)

set-to-1 (3,1) set-to-0 (3,1)

(3, 0) : (3, 1) : (3, 2) :

q0
(3,2)

q1
(3,2)

qf

(3,2)
qt
(3,2)

false(3,2) true(3,2)

init (3,2)

set-to-1 (3,2) set-to-0 (3,2)

q0
(3,3)

q1
(3,3)

qf

(3,3) qt
(3,3)

false(3,3) true(3,3)

init (3,3)

set-to-1 (3,3) set-to-0 (3,3)

(3, 3) :

q0
(2,0)

qf

(2,0)

false(2,0)

q0
(3,0)

qf

(3,0)

false(3,0)

init(1,0)

init(2,0)

init(3,0)

Figure 5.2: The local transition systems {T(i,j)}(i,j)∈K for Example 5.1

{true(3,1), init(1,0)}, {true(3,2), init(1,0)}, {true(3,3), init(1,0)}}

q0 = (q0
(1,0), q

0
(1,1), q

0
(1,2), q

0
(1,3), q

0
(2,0), q

0
(2,1), q

0
(2,2), q

0
(2,3), q

0
(3,0), q

0
(3,1), q

0
(3,2), q

0
(3,3))

As mentioned above, F is satisfiable by σ. We will show that Sys(F) can

reach the global final state state(σ), where K is a deadlock:

90 5.2 Reducing 3-SAT to LDIS and GDIS

(1, 0) (1, 1) (1, 2) (1, 3)

(2, 0) (2, 1) (2, 2) (2, 3)

(3, 0) (3, 1) (3, 2) (3, 3)

Figure 5.3: A graphical representation of the global deadlock in qend in Ex-

ample 5.1

We subsequently perform the interactions {init(i+1,0), init(i,1), init(i,2), init(i,3)}

for all 1 ≤ i ≤ 3.

Then, the clause-components (i, 0) are in their states qf

(i,0) and the literal-

components (i, j) are in their states q1
(i,j).

Now, we perform :

{set-to-1 (1,1),set-to-1 (2,1),set-to-1 (3,1)}, {set-to-1 (1,2),set-to-1 (2,2),set-to-1 (3,2)}

and {set-to-0 (1,3),set-to-0 (2,3),set-to-0 (3,3)}.

Then, K is a deadlock in the global state

qend = (qf

(1,0), q
t
(1,1), q

f

(1,2), q
f

(1,3), q
f

(2,0), q
f

(2,1), q
t
(2,2), q

t
(2,3), q

f

(3,0), q
f

(3,1), q
f

(3,2), q
t
(3,3))

The global deadlock situation is displayed in Figure 5.3, where the nodes

(i, j) represent the components (not their local states) and an edge from

node (i1, j1) to (i2, j2) means that (i1, j1) waits for (i2, j2).

5.2 Reducing 3-SAT to LDIS and GDIS 91

Polynomiality of the reduction:

There is no critical blow-up in notation when we go from F to Sys(F). The

four transition systems we introduce for each clause are of constant size. Also,

the set-to-1- and set-to-0-connectors have an overall size which is linear in

the number of literals in F and the other (5n) connectors in C are of constant

size.

Proposition 5.1

D ⊆ K is a local deadlock in a reachable state q and (i, j) ∈ D

⇒ (i, j) is in a local final state.

Proof:

Assume that component (i, 0) (1 ≤ i ≤ n) is part of a deadlock D ⊆ K

and in its local non-final state q0
(i,0). Obviously in any case, the enabled

init(i,0)-action can be performed together with the init(i−1,j)-actions of the

corresponding literal-components, as those cannot have left their starting

states, so (i, 0) cannot be part of a deadlock.

Assume that component (i, j) (1 ≤ i ≤ n, 1 ≤ j ≤ 3) is part of a deadlock

D ⊆ K and in one of its local non-final states:

If (i, j) is in q0
(i,j), then the {init(i+1,0), init(i,1), init(i,2), init(i,3)}-interaction

can still be performed because the actions init(i,j)(1 ≤ j ≤ 3) occur in no

other connector and the action init(i+1,0) occurs in other connectors {true(i,j),

init(i+1,0)} but only together with the true-actions of the discussed compo-

nents (i, j) which they do not offer until they have left their starting states

which is not the case as we assumed that (i, j) is in q0
(i,j). So (i, j) cannot be

part of a deadlock and in particular (i, j) can still proceed to q1
(i,j).

If (i, j) is in q1
(i,j), then the set-to-1- or set-to-0-actions can still be performed

in the future, because no other literal-component of the same variable can

have reached a local final state. This is obvious, as they can only transit

92 5.2 Reducing 3-SAT to LDIS and GDIS

conjointly (see definition of C). Also, any of these literal-components can

proceed to q1
(i,j) as explained above, if it is not in this state already.

So (i, j) can still perform some action in the future and thus cannot be part

of a deadlock. Hence, (i, j) must be in a local final state.

Lemma 5.1

(Sys(F) ∈ GDIS) ⇔ (Sys(F) ∈ LDIS)

Proof ⇒:

By definition, a global deadlock is a special case of a local deadlock.

Proof ⇐:

1) Let q be a reachable state in Sys(F), s.t. D ⊆ K is a local deadlock in q.

Then a literal-component (i, j) (1 ≤ j ≤ 3) participates in D (because the

clause-components do not communicate with each other directly).

2) Due to Proposition 5.1, (i, j) is in a final state. We show that at least one

of the literal-components of clause i must be in its true-state: Assume that

(i, j) is in qf

(i,j) (otherwise we are done). Then, ea(qf

(i,j)) = {false(i,j)}, which

occurs in the connector {false(i,0), false(i,1), false(i,2), false(i,3)}. If (i, 0) ∈ D,

then (i, 0) is in its local final state qf

(i,0). Therefore, (i, j) does not wait for

(i, 0). Hence, one of the literal-components of clause i must participate in

D. Due to Proposition 5.1 it must be in a final state where it does not offer

the false action, i.e., its true-state.

3) The literal-component of clause i, which is in its true-state can only wait

for the clause-component (i + 1, 0). So we have (i + 1, 0) ∈ D and due to

Proposition 5.1 (i + 1, 0) has to be in its only local final state, i.e., its false-

state.

4) As (i + 1, 0) ∈ D offers false(i+1,0), at least one of the literal-components

5.2 Reducing 3-SAT to LDIS and GDIS 93

of clause i + 1 has to be in D and in its true-state. From here, we apply

induction by going to 3) and conclude the same for all clauses.

5) It is possible that some variables have not yet been set to 0 or 1, i.e.,

the corresponding literal-components are not yet in their final states, so the

deadlock D would not be global. It is however quite obvious, that we still

may perform interactions such that these components finally reach local fi-

nal states. We call the thus reached state q′ and in q′, D = K is a global

deadlock.

Corollary 5.1

From the observations described under “⇐” we may deduce:

If Sys(F) is a global deadlock, at least one of the literal-components of each

clause is in its true-state.

Lemma 5.2

(F is satisfiable) ⇔ (Sys(F) ∈ GDIS)

Proof ⇒:

Let F = k1 ∧ . . . ∧ kn with ki = (l(i,1) ∨ l(i,2) ∨ l(i,3)) be a satisfiable 3-CNF

formula and let σ(F) = 1 for an assignment σ.

The starting state of Sys(F) is q0 := (q0
(1,0), q

0
(1,1), q

0
(1,2), q

0
(1,3), q

0
(2,0), . . . , q

0
(n,3)).

Let Sys(F) perform the following transitions:

1) For all 1 ≤ i ≤ n perform the interactions {init(i+1,0), init(i,1), init(i,2), init(i,3)}.

Then all clause-components (i, 0) (1 ≤ i ≤ n) are in their false-states qf

(i,0)

and all literal-components (i, j) (1 ≤ i ≤ n, 1 ≤ j ≤ 3), are in their states

q1
(i,j).

2) Let x be a variable that occurs in F at the positions (i1, j1), (i2, j2), . . . ,

(ia, ja) (and only there), and let σ(x) = 1 (or σ(x) = 0, respectively).

Then perform the interaction {set-to-1 (i1,j1), set-to-1 (i2,j2), . . ., set-to-1 (ia,ja)}

94 5.2 Reducing 3-SAT to LDIS and GDIS

(or {set-to-0 (i1,j1), set-to-0 (i2,j2), . . . ,set-to-0 (ia,ja)}, respectively).

After having performed the corresponding interaction for each variable that

occurs in F , we reached the global final state qend = state(σ) that we de-

scribed in Remark 5.1.

As σ(F) = 1, we have σ(ki) = 1 for all 1 ≤ i ≤ n, i.e., in each clause there

is at least one literal that evaluates to 1 under σ. This means there is at

least one positive literal l(i,j) = x with σ(x) = 1 or a negative literal l(i,j) = x

with σ(x) = 0. In both cases, the corresponding transition system T(i,j) has

reached its local state qt
(i,j) (cf. Figure 5.1, (b) and (c)).

Hence, we have ∀1 ≤ i ≤ n qend(i, 0) = qf

(i,0) and ea(qf

(i,0)) = {false(i,0)}.

Furthermore, ∀1 ≤ i ≤ n ∃j ∈ {1, 2, 3}, s.t. qend(i, j) = qt
(i,j) and ea(qt

(i,j)) =

{true(i,j)}.

Obviously, Sys(F) is a global deadlock in qend (or in other words D = K is a

deadlock in qend in Sys(F)), as every clause-component (i, 0) waits for at least

one of its literal-components (i, 1), (i, 2), (i, 3). Those literal-components in

(i, 1), (i, 2), (i, 3) that are in their qf -states, also wait for the ones that are

in their qt-states. Meanwhile, those literal-components that are in their qt-

states wait for the clause-component (i + 1, 0). Hence, we observe a cyclic

waiting over all clauses (cf. Example 5.1, Figure 5.3), that includes all com-

ponents.

Proof ⇐:

F ∈ GDIS means that there is a reachable global state, where K is a dead-

lock.

By Corollary 5.1 we know that at least one component of every clause must

be in its true-state.

5.3 Everything is PSPACE-complete in Interaction Systems 95

Due to the one-to-one correspondence of literal-components to literals (cf. Re-

mark 5.1), the fact that all occurrences of a variable x are consistently set to

1 or 0 and the fact that in each clause at least one literal evaluates to “true”,

we may conclude the existence of a satisfying assignment σ.

5.3 Everything is PSPACE-complete in Interaction

Systems

In this section, we first prove the problems of reachability, progress, global

and local deadlock and availability to be PSPACE-hard2. We build on the re-

sult established in Section 3.1.1, where we gave a polynomial translation from

1-safe Petri nets to interaction systems which yielded PSPACE-hardness for

reachability in interaction systems. Now we give four polynomial reductions

f1, . . . , f4 that build a reduction chain as depicted in Figure 5.4. The chain

allows to derive the PSPACE-hardness result for all considered properties

from the PSPACE-hardness of reachability as well as PSPACE-solvability

for all properties in the chain from the PSPACE-solvability of availability.

Hence, we formally prove all problems in the chain to be PSPACE-complete.

Although the reductions vary strongly in their degree of difficulty, they also

Reachability Progress
f1

GDIS
f2

LDIS
f3

Availability
f4

PSPACE-hard ∈ PSPACE

Corollary 3.1 Theorem 5.5

Figure 5.4: The polynomial time reductions fi (1 ≤ i ≤ 4)

2This result outruns our earlier published result that we presented in Section 5.2.

96 5.3 Everything is PSPACE-complete in Interaction Systems

have one basic idea in common. In each of the reductions, we add a compo-

nent main to the system. However, the purpose (and thus the behavior) of

main will be a different one for each reduction.

For each reduction, we present its formal definition followed by a short ex-

planation and sometimes a proof of correctness. The logspace computability

is obvious, so proofs are omitted.

5.3.1 Reachability is polynomially reducible to Progress

Theorem 5.1

Reachability is polynomially reducible to Progress

Proof: Let Sys ∈ ĨS and q = (q1, . . . , qn) ∈ Q[Sys]. We associate with

(Sys,q) an interaction system f1(Sys, q) (which is free of global deadlocks)

s.t.

((Sys,q) ∈ Reachability) ⇔ ((f1(Sys,q),main) 6∈ Progress).

Formal definition of f1 :

Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then

f1(Sys, q) = {K ′, {A′
i}i∈K ′, C ′,Comp′, {T ′

i}i∈K ′}, where

K ′ := K ∪ {main},

For i∈K:A′
i := Ai ∪ {runi},

A′
main := {dummymain, checkmain},

For i∈K:T ′
i := (Qi, A

′
i,→

′
i, q

0
i), where

→′
i := →i ∪{(qi, runi, qi)},

T ′
main := ({q0

main}, A
′
main,→

′
main, q

0
main), where

→′
main := {(q0

main, checkmain, q
0
main), (q

0
main, dummymain, q

0
main)}.

5.3.2 Progress is polynomially reducible to GDIS 97

C ′ := {c ∪ {checkmain}|c ∈ C}∪{{runi |1 ≤ i ≤ n}}∪{{dummymain}},

Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation: We add a component main whose local transition system

consists of a single state with two loops. For each local transition system

Ti we add a loop in each state qi labeled by runi. Clearly f1(Sys, q) ∈ ĨS

holds. The loop of main labeled by dummymain can be performed indepen-

dently (i.e., {dummymain} is a connector) and assures that f1(Sys,q) 6∈ GDIS

(which is a precondition for asking for progress). The second loop is labeled

by the action checkmain, which is added to every interaction α ∈ C ∪ Comp.

Hence, the only interaction in C ∪Comp in which main does not participate

is {run1, . . . , runn}.

This fact, together with the obvious observation that q is reachable in Sys

iff q extended by q0
main is reachable in f1(Sys, q) allows us to conclude that

in f1(Sys, q) there is a run from q in which main does not participate iff q is

reachable in Sys.

5.3.2 Progress is polynomially reducible to GDIS

Preliminaries: We present a parameterized counter-system in order to build

an interaction system for an mn-counter, m, n ∈ N:

Count(m,n) = ({n + 1, . . . , 2n}, {Ai}n+1≤i≤2n, C, Comp, {Ti}n+1≤i≤2n),

where Ai = {inci, deci} for n + 1 ≤ i ≤ 2n − 1 and A2n = {inc2n, dummy2n}

C = {{incn+1, dummy2n}} ∪
⋃2n

i=n+2{c(inci)}

where c(inci) = {inci} ∪
⋃i−1

j=n+1{decj},

Comp = {{incn+1}, {incn+1, dummy2n}},

Ti = (Qi, Ai,→i, q
0
i), where Qi = {q0

i , . . . , q
m−1
i } and

98 5.3 Everything is PSPACE-complete in Interaction Systems

→i=

{(qj
i , inci, q

j+1
i) | 0 ≤ j ≤ m − 2} ∪ {(qm−1

i , deci, q
0
i)} ; n + 1 ≤ i ≤ 2n−1

{(qj
i , inci, q

j+1
i) | 0 ≤ j ≤ m − 2} ∪ {(qm−1

i , dummy2n, q
m−1
i)} ; i = 2n

A system Count(m,n) behaves deterministically and simply performs mn − 1

(“counting”) interactions before stopping. It nicely demonstrates the capa-

bility of interaction systems to synchronize with different numbers of partic-

ipants.

Example 5.2

Count(3,4) = ({5, 6, 7, 8}, {Ai}5≤i≤8, C,Comp, {Ti}5≤i≤8), where

Ai = {inci, deci} (5 ≤ i ≤ 7), A8 = {inc8, dummy8},

C = { {inc5, dummy8}, {inc6, dec5}, {inc7, dec6, dec5},

{inc8, dec7, dec6, dec5}},

Comp = {{inc5}, {inc5, dummy8}}, and the Ti’s are given in Figure 5.5.

q0
5

q1
5

q2
5

inc5

dec5

T5:

inc5

q0
6

q1
6

q2
6

inc6

dec6

T6:

inc6

q0
7

q1
7

q2
7

inc7

dec7

T7:

inc7

q0
8

q1
8

q2
8

inc8

T8:

inc8dummy8

Figure 5.5: The local transition systems for Count (3,4)

The behavior3 of our example system Count (3,4) is as follows: It performs

a deterministic computation starting in (q0
5, q

0
6, q

0
7, q

0
8). The system describes

a 34-counter that counts from 0 to 34-1=80 and then cannot perform any

further interaction.

We refer to the local transition system Ti of a component i of some pre-

3dummy8 is introduced only to ensure that T8 is non-terminating

5.3.2 Progress is polynomially reducible to GDIS 99

viously defined system Sys by Ti[Sys]. The same notation is used for the

other elements of the interaction system tuple. E.g., Comp[Count(3,4)] =

{{inc5}, {inc5, dummy8}}. Whenever it is obvious by the context to which

system we refer (as, e.g., in the next subsection), we may simply write Q

instead of Q[Sys], etc. for ease of notation.

Theorem 5.2

Progress is polynomially reducible to GDIS.

Proof:

Let Sys ∈ (ĨS \ GDIS) and k ∈ K[Sys]. If k participates in every α ∈

C ∪Comp, then k makes progress4. Otherwise, we associate with (Sys,k) an

interaction system f2(Sys, k) s.t.

(Sys,k) ∈ Progress ⇔ f2(Sys,k) 6∈ GDIS.

In the following, let m := max{|Qi| | i ∈ K[Sys]}.

Formal definition of f2 :

Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then

f2(Sys, k) = {K ′, {A′
i}i∈K ′, C ′,Comp′, {T ′

i}i∈K ′}, where

K ′ := K ∪ {n + 1, . . . , 2n,main},

For i ∈ K: A′
i := Ai,

For i ∈ {n + 1, . . . , 2n}: A′
i := Ai[Count(m,n)],

A′
main := {checkmain, excludemain, countmain},

For i ∈ K: T ′
i := Ti,

For i ∈ {n + 1, . . . , 2n}: T ′
i := Ti[Count(m,n)],

and T ′
main is depicted in Figure 5.6.

4We have to consider this case explicitly because f2(Sys, k) 6∈ ĨS for such an input.

100 5.3 Everything is PSPACE-complete in Interaction Systems

q0
main q1

main q3
main

q2
main

excludemain checkmain

excludemain countmain

checkmaincheckmain

Figure 5.6: The local transition system T ′
main

Ccheck := {c ∪ {checkmain} | c ∈ C}

Compcheck := {α ∪ {checkmain} | α ∈ Comp}

Cexclude := {c ∪ {excludemain} | c ∈ C ∧ k(c) = ∅}

Compexclude := {α ∪ {excludemain} | α ∈ Comp ∧ k(α) = ∅}

Ccounter := {c ∪ {countmain} | c ∈ C[Count(m,n)]}

Compcounter := {α ∪ {countmain} | α ∈ Comp[Count(m,n)]}

= {{incn+1, countmain}, {incn+1, dummy2n, countmain}}

C ′ := Ccheck ∪ Cexclude ∪ Ccounter

Comp ′ := Compcheck ∪ Compexclude ∪ Compcounter

Explanation: First, we observe that f2(Sys, k) ∈ ĨS holds. Sys is glob-

ally deadlock-free and we want to know whether it contains a run from q0,

in which k does not participate infinitely often. According to Remark 2.8

(p. 31), this amounts to the question, whether there is a reachable global

state, that lies on a cycle that does not involve k. As mn is an upper bound

for the size of the global state space of Sys, this is equivalent to asking

whether it is possible to perform (not necessarily starting in q0) mn consec-

utive interactions in which k does not participate.

Lemma 5.3

(Sys,k) ∈ Progress ⇔ f2(Sys,k) 6∈ GDIS

5.3.2 Progress is polynomially reducible to GDIS 101

Proof:

⇐ If there is a run from q0 in which k does not participate infinitely often,

then there is a global deadlock in f2(Sys, k):

In f2(Sys,k), we may perform arbitrarily many “original” interactions

of Sys in the beginning, which are accompanied by the action checkmain.

Assuming that there is a run, in which k does not participate infinitely

often, we will be able to reach a global state q of f2(Sys, k) which lies

on a cycle whose transitions are labeled by interactions in which k does

not participate. Thus, we may perform mn consecutive5 interactions of

Sys in which k does not participate. These interactions will be accom-

panied by the action excludemain and all of them (except for the first)

will be followed by a count-interaction. Once we have performed the

(mn − 1)-th count-interaction, the counter components are in deadlock

causing a global deadlock in f2(Sys, k).

⇒ If there is a global deadlock in f2(Sys, k) then there is a run in Sys in

which k does not participate infinitely often:

Note that there is no global deadlock in Sys and our construction

does not interfere with the original computation of Sys. (I.e., the

reachable global state space of f2(Sys, k) projected to the components

K = {1, . . . , n} of Sys is equal to the reachable global state space of

Sys.) As a consequence, f2(Sys, k) can proceed, as long as main offers

its action checkmain which simply accompanies the original interactions

of Sys. However, main offers this action in all but one of its local states.

So a global deadlock is only possible when T ′
main is in its local state

5consecutive in the sense of interactions that belonged to Sys, i.e., we disregard the

interleaved count-interactions

102 5.3 Everything is PSPACE-complete in Interaction Systems

q2
main and offers its action countmain. The only case when countmain is

no longer possible occurs after mn − 1 executions of countmain. In this

case, mn consecutive (i.e., interleaved only with the count-interactions)

instances of excludemain have just occurred. As k does not participate

in the corresponding exclude-interactions and as there are at most mn

global states in |Q| we have visited at least one global state at least

twice. Thus, we could (keeping to such a cycle) perform interactions

excluding k forever and this corresponds to a run from q0 in Sys in

which k does not participate infinitely often. Thus, k does not make

progress in Sys.

5.3.3 GDIS is polynomially reducible to LDIS

Theorem 5.3

GDIS is polynomially reducible to LDIS

Proof:

Let Sys ∈ ĨS. We associate with Sys an interaction system f3(Sys) s.t.

(Sys ∈ GDIS) ⇔ (f3(Sys) ∈ LDIS).

Formal definition of f3 :

Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then

f3(Sys) = {K ′, {A′
i}i∈K ′, C ′,Comp′, {T ′

i}i∈K ′}, where

K ′ := K ∪ {main},

For i∈K:A′
i := Ai ∪ {dummyi},

A′
main := {dummymain, checkmain},

For i∈K:T ′
i := (Qi, A

′
i,→

′
i, q

0
i), where

5.3.3 GDIS is polynomially reducible to LDIS 103

→′
i := →i ∪{(qi, dummyi, qi) | qi ∈ Qi}.

T ′
main := ({q0

main, q
1
main}, A

′
main,→

′
main, q

0
main), where

→′
main := {(q0

main, checkmain, q
1
main), (q

1
main, dummymain, q

0
main)},

C ′ := {c ∪ {checkmain} | c ∈ C}∪

{{dummy1, . . . , dummyn, dummymain}},

Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation: Clearly, f3(Sys) ∈ ĨS. We add an additional component

main which alternatingly accompanies original interactions of Sys in one

step and then allows the system to perform a connector including all com-

ponents in a second step. This preserves global deadlocks but resolves local

ones.

Lemma 5.4

(Sys ∈ GDIS) ⇔ (f3(Sys) ∈ LDIS)

Proof:

⇒ Let Sys ∈ GDIS. Let q = (q1, . . . , qn) a global state of Sys, which is

reachable by a path φ from q0[Sys] such that q 6→. By construction of

f3, the global state (q1, . . . , qn, q
1
main) is reachable in f3(Sys) by starting

in q0[f3(Sys)] and performing interactions according to φ (extended

by checkmain) interleaved with instances of the dummy-connector. In

(q1, . . . , qn, q
1
main) the dummy-connector is enabled and by performing

it, we reach (q1, . . . , qn, q
0
main) which is a global deadlock state in f3(Sys).

⇐ Let f3(Sys) ∈ LDIS, namely let q = (q1, . . . , qn, qmain) in Reach(f3(Sys))

and let ∅ 6= K̃ ⊆ K ′ be a deadlock in q. qmain = q1
main is not possible

because in this case the dummy-connector (in which all components

104 5.3 Everything is PSPACE-complete in Interaction Systems

participate, i.e., also K̃) may be performed which would be a contra-

diction to our deadlock assumption. So main is in q0
main and offers

checkmain. Now if any α ∈ C ′ ∪ Comp′ with checkmain ∈ α can be per-

formed, main would also reach q1
main and again the dummy-connector

could be performed yielding the same contradiction. Hence, we con-

clude that in q no interaction α ∈ C ′ ∪ Comp′ with checkmain ∈ α can

be performed. By construction of f3 this yields that in (q1, . . . , qn) no

interaction in C ∪ Comp is possible and as (q1, . . . , qn) is reachable in

Sys, Sys ∈ GDIS follows.

5.3.4 LDIS is polynomially reducible to Availability

Theorem 5.4

LDIS is polynomially reducible to Availability

Proof:

Let Sys ∈ ĨS. We associate with Sys an interaction system f4(Sys) (which

is free of global deadlocks) s.t.

(Sys ∈ LDIS) ⇔ ((f4(Sys),main) 6∈ Availability).

Formal definition of f4 :

Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K},

then f4(Sys) = {K ′, {A′
i}i∈K ′, C ′,Comp′, {T ′

i}i∈K ′}, where6

6For ease of notation we use sets of actions as edge labels in the definition of →′

i as

well as in Figure 5.7. When we write (q, A, q′) ∈→′

i we mean (q, a, q′) ∈→′

i ∀a ∈ A. Note

that by ea(qi) we refer to the enabled actions of the local state qi in Sys (not in f4(Sys)).

5.3.4 LDIS is polynomially reducible to Availability 105

qi

locki

locki q̂i

locki

qD
i

qD
i

di

di

q̂D
i

q̂D
i

unlocki

unlocki Ai ∪ {alli}

qclr
i

⋃
ai∈ea(qi)

{ai, âi}
cleari

T ′
i :

Figure 5.7: The modification for a local state qi in the transition system T ′
i

q0
main q1

main q2
main

lockmain unlockmain
q3
main

progressmain

clearmain

T ′
main :

q0
n+1

dummyn+1

T ′
n+1 :

q1
n+1 q2

n+1

dummyn+1

lockn+1 unlockn+1

Figure 5.8: The local transition systems T ′
main and T ′

n+1

K ′ := K ∪ {n+1} ∪ {main}

For i∈K: A′
i := Ai ∪ {âi | ai ∈ Ai} ∪ {locki, unlocki, di, di, cleari}

A′
n+1 := {dummyn+1, lockn+1, unlockn+1}

A′
main := {lockmain, unlockmain, clearmain, progressmain}

For i∈K: T ′
i := (Q′

i, A
′
i,→

′
i, q

0
i), where

Q′
i :=

⋃
qi∈Qi

{qi, q̂i, q
D
i , q̂D

i , qD
i , q̂D

i , qclr
i }

→′
i :=

⋃
qi∈Qi

{ (qi, locki, q̂i), (q̂i, di, q
D
i), (qD

i , unlocki, q̂
D
i),

(q̂i, di, q
D
i), (qD

i , unlocki, q̂
D
i),

(q̂D
i ,

⋃
ai∈ea(qi)

{ai, âi}, q
clr
i),

(q̂D
i , Ai ∪ {alli}, q̂

D
i), (qclr

i , cleari, q
clr
i)}

∪ →i

T ′
n+1 and T ′

main are given in Figure 5.8.

The result of our modifications is sketched for a state qi ∈ Qi in Figure 5.7.

106 5.3 Everything is PSPACE-complete in Interaction Systems

C ′ := {{dummyn+1}, {lock1, . . . , lockn, lockn+1, lockmain}}

∪ {{unlock1, . . . ,unlockn,unlockn+1,unlockmain}}

∪ {{d1}, . . . , {dn}, {d1}, . . . , {dn}}

∪ {{all1, . . . , alln, clearmain}}

∪ {{clear1, clearmain}, . . . , {clearn, clearmain}}

∪ {{progressmain}}

∪ C ∪ Cclear, where

Cclear := {{clearmain, â} ∪ (c \ a) | a ∈ c ∈ C}

Comp ′ := Comp ∪ Compclear, where

Compclear := {{clearmain, â} ∪ (α \ a) | a ∈ α ∈ Comp}

Explanation: Clearly, f4(Sys) ∈ ĨS holds. Component n + 1 guarantees

f4(Sys) 6∈ GDIS. The idea of our reduction is as follows: In the beginning

main offers in any reachable state an action lockmain, which can participate

in the lock -interaction which includes all components. As a result, main will

always be able to participate in an interaction as long as this action is not

performed. Now in any reachable state q of Sys we want to be able to check

whether there is a local deadlock in q. For this purpose in any reachable state

(q1, . . . , qn, q
0
n+1, q

0
main), the interaction {lock1, . . . , lockn, lockn+1, lockmain} can

be performed leading to a state where for every i ∈ K a choice between di

and di takes place. Those components j that select dj form a subset K̃ ⊆ K.

Then the component main will not be able to participate in any further

interaction if and only if K̃ is a local deadlock in (q1, . . . , qn) in Sys.

Lemma 5.5

(Sys ∈ LDIS) ⇔ ((f4(Sys),main) 6∈ Availability)

5.3.4 LDIS is polynomially reducible to Availability 107

Proof:

⇒ If there is a local deadlock in Sys, then main is not available in f4(Sys).

Let K̃ be a local deadlock in some reachable state q = (q1, . . . , qn). In

f4(Sys) we perform an interaction sequence from the global starting

state (q0
1, . . . , q

0
n, q0

n+1, q
0
main) to (q1, . . . , qn, q

0
n+1, q

0
main). Now we perform

the lock -interaction followed by {di} for i ∈ K̃ and {di} for i ∈ (K \K̃).

Finally, we perform the unlock -interaction. The components i ∈ K̃ may

not perform any interaction, because they are a local deadlock, even

though all components in (K \K̃) offer all their respective actions (and

might indeed perform further interactions). As a consequence, main’s

action clearmain will not be enabled, so main is “stuck” and will never

again be enabled.

⇐ If there is no local deadlock in Sys, then main is available in f4(Sys).

As long as we simply perform interactions α ∈ C ∪ Comp in f4(Sys),

main will always be enabled. Now, even if we choose in some thus

reached global state to perform the lock interaction, main will end up

enabled again:

The next n transitions have to be the di resp. di connectors. They

may be performed in an arbitrary order, but this is of no relevance.

Then we have no other choice but to preform the unlock -interaction.

Let K̃ ⊆ K be the set of components for which we performed the ac-

tions di. If K̃ = ∅ we may perform the all -interaction and main will

reach its local state q3
main and be enabled forever. If K̃ 6= ∅, remember

that K̃ is no local deadlock. This fact, together with the fact that all

components in (K \ K̃) offer all their actions, means that one or more

of the components in K̃ are able to participate in an interaction. As all

components of K̃ offer their respective actions a in both forms a and

108 5.3 Everything is PSPACE-complete in Interaction Systems

â, some α ∈ (Cclear ∪ Compclear) is enabled. This means that main is

enabled as long as we perform interactions in which only components

in (K \ K̃) participate.

Now, if we perform an interaction α ∈ (Cclear ∪ Compclear) again main

will reach its local state q3
main and be enabled forever.

Note that as a third possibility we might also perform an original in-

teraction α ∈ C ∪ Comp in which at least one of the components in

K̃ participates. However, this will result in a local state change of the

respective components such that they would afterwards offer their ac-

tions cleari, which would again enable main. Finally, if an interaction

{cleari, clearmain} is performed, main reaches q3
main and is, as already

mentioned, enabled forever.

5.3.5 Availability is in PSPACE

In this section, we show that Availability is in PSPACE. We first prove that

the problem’s complement is in NPSPACE. For this, we give a nondetermin-

istic (polynomially space bounded) algorithm which receives as input a pair

(Sys,k), where Sys 6∈ GDIS and k ∈ K[Sys], and outputs “yes” iff k is not

available in Sys.

Then we invoke NPSPACE=PSPACE [Sav70] to deduce that Availability is

also in PSPACE.

Theorem 5.5

Availability is in PSPACE

Let Sys ∈ ĨS and k ∈ K[Sys]. Let m := max{|Qi| | i ∈ K[Sys]}. Then,

Algorithm 1 - Non-Availability(Sys,k) (which is nondeterministic) has the

5.3.5 Availability is in PSPACE 109

possibility to produce the output yes iff k is not available in Sys. It is

obvious that the algorithm works in polynomial space because it contains

only six variables for global states respectively integers with upper bound

mn (which can be stored in log(mn) = n · log(m)).

Proof of Correctness:

k is not available in Sys
(1)
⇔ ∃z ∈ {0, . . . , mn − 1} ∃α0, . . . , αz ∈ C ∪ Comp ∃q1, . . . , qz ∈ Q

∃j ∈ {0, . . . , z} q0 α0→ q1 α1→ . . .
αj−1

→ qj
αj

→ . . .
αz−1

→ qz αz→ qj and

∀i ∈ {j, . . . , z} : qi does not enable k
(2)
⇔ The call Non-Availability(Sys,k) (cf. Algorithm 1) allows for

the output “yes”

(1) (⇒) The global transition system is finite. If k is not available, there is a

run (i.e., an infinite sequence) and thus a cycle such that in no global state

on the cycle an interaction is enabled in which k participates. A shortest

reachable cycle with this property is completed after at most mn steps which

is an upper bound for the number of (reachable) global states.

(⇐) On the other hand, the existence of any reachable cycle with

this property implies the existence of a run in which k is only finitely often

enabled, so k is not available.

(2) (⇐) If the algorithm returns yes, then cycle complete has at some time

been set to true while violation never was. Furthermore, cycle complete can

only be set to true within the second while-loop (15-24), which is only per-

formed as long as interaction counter < mn + 1 holds. Interaction counter

is incremented once in both while-loops, so we conclude that we have per-

formed both loops at most mn +1 times altogether. violation has never been

set to true so we have not visited a global state in which k is enabled in the

second while-loop. So there is a reachable state (namely the state cycle state

110 5.3 Everything is PSPACE-complete in Interaction Systems

which complies with the state qj in the formal statement above) from which

we may follow edges that build a cycle of states (back to cycle state) such

that no state on the cycle enables k.

(⇒) Now we assume ∃z ∈ {0, . . . , mn−1} ∃j ∈ {0, . . . , z} ∃q1, . . . , qz ∈

Q (pairwise distinct) ∃α0, . . . , αz ∈ C ∪ Comp with

q0 α0→ q1 α1→ . . .
αj−1

→ qj
αj

→ . . .
αz−1

→ qz αz→ qj and

∀i ∈ {j, . . . , z} qi does not enable k.

Then we can obviously perform the transitions q0 α0→ q1, . . . , qj−1 αj−1

→ qj in

the first loop until present state=qj. Only then we would choose to set cy-

cle reached := true.

Thus, we would set cycle state:=qj . By successively performing the tran-

sitions qj
αj

→ . . .
αz−1

→ qz we would then (without setting violation to true)

obtain present state = qz. Now we choose the transition (qz, αz, q
j) and with

next state = qj = cycle state we set cycle complete := true and thereby

quit the second loop. We do not quit the loop before because we performed

an overall sum of z loop cycle executions in which we incremented interac-

tion counter and we know that z ≤ mn. Thus as we quit the second loop, we

have cycle complete = true and violation = false and the algorithm returns

“yes”.

5.3.5 Availability is in PSPACE 111

Algorithm 1 Non-Availability(Sys, k)

1: global state present state := q0[Sys]

2: global state cycle state;

3: integer interaction counter := 0;

4: boolean cycle reached := false;

5: boolean cycle complete := false;

6: boolean violation := false;

7: while (not cycle reached) and (interaction counter < mn + 1) do

8: choose an edge (present state,α,next state);

9: interaction counter + +;

10: present state := next state;

11: choose (cycle reached := false) resp. (cycle reached := true);

12: end while

13: cycle state := present state;

14: while (not cycle complete) and (interaction counter < mn + 1) do

15: if (present state enables k) then

16: violation := true

17: end if

18: choose an edge (present state,α,next state);

19: interaction counter + +;

20: if next state = cycle state then

21: cycle complete := true;

22: end if

23: present state := next state;

24: end while

25: if (cycle complete) and (not violation) then

26: return “yes”;

27: else

28: return “no”;

29: end if

Chapter 6

An efficient Approach

6.1 Overview

In the previous chapter, we pointed out that problems like deadlock-detection

are not likely to be solvable in polynomial time for interaction systems. We

take this as a motivation for an approach based on a polynomial-time com-

putable sufficient condition for deadlock-freedom. The ideas presented in

this chapter apply to component-based systems in general and are not re-

stricted to the model of interaction systems, which serves as our means of

demonstration.

The general idea of component-based systems is that systems are built from

reusable computation units that retain their identity after composition, i.e.,

they can still be identified, e.g., to be exchanged or modified. This leaves

the possibility to build subsystems of a system by decomposing it and then

recomposing parts of it while neglecting other parts. If the nature of the

model’s synchronization pattern includes the idea of multi-party communi-

cation (which is the case for interaction systems) where neglecting certain

components implies a relaxation of the global behavior we can thus estab-

lish subsystems whose transition systems in a way approximate the global

transition system.

113

114 6.2 Subsystem Reachability

We start out in Section 6.2 by giving a formal definition of the notion of

subsystem and some related ideas. In Section 6.3 we state a basic suffi-

cient condition that investigates subsystems of a parametrized size d but

only applies a static (i.e., independent of d) local predicate. In Section 6.4,

we generalize the idea of proving global properties by local predicates and

thereafter we introduce the Cross-Checking technique in Section 6.5 that

improves the quality of our state space approximation given by the subsys-

tems. In Section 6.6, we present a more sophisticated sufficient condition for

deadlock-freedom. We finally improve this sufficient condition in Section 6.7

by applying another variant of the Cross-Checking idea and speed it up by

restricting our investigations to a subset of subsystems in Section 6.8. Along

with our considerations, we present examples that point out the applicabil-

ity of our approach and refer to the appendix for empiric data from our case

studies.

6.2 Subsystem Reachability

As described above, our ideas build on the analysis of subsystems of inter-

action systems (or component-based systems in general). In this section,

we formalize the notion of subsystems and along with it establish the ter-

minology that is needed in later sections. For the following definitions, let

Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) be an interaction system.

Definition 6.1

Let K ′ ⊆ K and q be a global state. Then q ↓ K ′ := (qi)i∈K ′ denotes the

projection of q to the components in K ′. We also use the ↓-operator to

denote projections of projections. For a projected state q′ we refer to the

components that occur in q′ by K(q′).

6.2 Subsystem Reachability 115

Definition 6.2

For K ′ ⊆ K let QK ′ =
∏

i∈K ′ Qi be the state space induced by K ′ and

Subs(K ′) =
⋃

K ′′⊆K ′ QK ′′ be the substates induced by K ′.

Definition 6.3

For an interaction α ∈ Int and K ′ ⊆ K we define the projection of α to the

components in K ′ by α ↓ K ′ := α ∩ (
⋃

i∈K ′ Ai).

For an interaction set Int and K ′ ⊆ K we define the projection of Int to

the components in K ′ by IntK ′ := {α ↓ K ′ | α ∈ Int} \ {∅}.

Definition 6.4

Let K ′ ⊆ K. The subsystem SysK ′ is given by (K ′, {Ai}i∈K ′, IntK ′, {Ti}i∈K ′).

Note that SysK ′ accords to our definition of generalized interaction systems1,

so all definitions for interaction systems apply. We refer to the transition

relation of the behavior of SysK ′ by →K ′.

For the definition of →K ′, we restrict interactions to actions of components in

K ′. This amounts to assuming (for reachability) that actions of components

in K \K ′ are always available. This definition of a subsystem implies that if

a state q is reachable in the global transition system, then for every K ′ ⊆ K

the state q ↓ K ′ is reachable in the corresponding subsystem. We formalize

this observation in the following lemma.

Lemma 6.1

Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K).

q ∈ Reach(Sys) ⇒ ∀K ′ ⊆ K, (q ↓ K ′) ∈ Reach(SysK ′).

1On the other hand, for the the notion of original interaction systems this may not be

the case, i.e., for Sys ∈ ĨS there may be K ′ ⊆ K, such that SysK′ 6∈ ĨS, because the

interaction set of our projection is not necessarily splittable into sets C and Comp that

meet the requirements for ĨS.

116 6.2 Subsystem Reachability

Lemma 6.1 implies that the following notion of extending a set of substates

yields an over-approximation of the reachable global state space. In fact, we

will never explicitly compute or store such an extension, because this would

ruin the benefits that we obtain by projecting in the first place. Instead, we

introduce this notion for formal reasoning.

Definition 6.5

Let q′ be a substate. Then Ext(q′, K ′) for K ′ ⊆ K denotes the set of ex-

tensions of q′ in K ′ and is defined by Ext(q′, K ′) = {q′}×
∏

i∈K ′\K(q′) Qi. If

K ′ ⊆ K(q′) let Ext(q′, K ′) = {q′}. We say that a substate q̂′ is an extension

of a substate q′ if K(q′) ⊆ K(q̂′) and q̂′ ↓ K(q′) = q′.

We overload Ext to also work on sets by Ext(Q′, K ′) :=
⋃

q′∈Q′ Ext(q′, K ′).

Often, we extend substates to the set K of all components, so for ease of nota-

tion we define a function f by f(q′) = Ext(q′, K) resp. f(Q′) = Ext(Q′, K).

Remark 6.1

The approach that we present in this chapter does not rely on the reachability

information that can be derived from a single subsystem. Instead, we build

on the combined reachability information of all subsystems of a certain size

d. According to our definition of interaction systems in Section 2.3.1 (cf.

p. 26) (where we denoted the number of components by n and the maximum

size of a component’s state space by m), there are
(

n

d

)
such subsystems and

md is an upper bound for a subsystem’s global state space size.

Please note that
(

n

d

)
· md is hence an upper bound for the number of states

that we have to explore.

Lemma 6.1 together with our definition of the extension function f im-

plies that the intersection of these over-approximations again yields an over-

approximation. Although we will not be able to compute this intersection in

polynomial time, it will become relevant in Section 6.5 where we will try to

approximate it.

6.2 Subsystem Reachability 117

Corollary 6.1

Reach(Sys) ⊆
⋂

K ′⊆K, with |K ′|=d f(Reach(SysK ′)).

Given a set K ′ ⊆ K and the induced subsystem SysK ′ we denote by the

term Reach(SysK ′)[j] the set of states that can be reached in SysK ′ by a

transition sequence in which the last step causes a proper state change for

component j.

Definition 6.6

We define the set of states that are reachable by a proper state change

of a component j in a subsystem SysK ′ by

Reach(SysK ′)[j] := {q′ ∈ Reach(SysK ′) | ∃q ∈ Reach(SysK ′) ∃α ∈ IntK ′

q
α
→ q′ ∧ qj 6= q′j}.

Similarly to Lemma 6.1, the (global) reachability of a state q by a proper

state change of a component j implies that the projection of q is reachable

by a proper state change of j in all subsystems SysK ′ that include j.

Lemma 6.2

q ∈ Reach(Sys)[j] ⇒ ∀K ′ ⊆ K with j ∈ K ′ : q ↓ K ′ ∈ Reach(SysK ′)[j]

Remark 6.2

For three components i, j, k and d ≥ 3, there are various (in fact exactly
(
|K|−3
d−3

)
) subsystems SysK ′ of size d in which these components occur. Due

to Lemma 6.2 we may conclude that for a state q that is globally reachable

by a proper state change of j, the projection of q to i, j, k is reachable in

every subsystem SysK ′ with {i, j, k} ⊆ K ′ by a proper state change of j.

We denote the intersection of these subsystems’ projections to {i, j, k} by

Reachd(Sysi,j,k)[j].

118 6.2 Subsystem Reachability

T1:

T5:

q1

q5

T2:

q2

q′2

T3:

q3

q′3

T4:

q4

q′4 q′′4

a1

e5

a2

b2

b3

b2
e3

c2c2 d3d3

c4

c4 d4

d4

Figure 6.1: The local transition systems Ti for Example 6.1

Definition 6.7

Let i, j, k ∈ K and 3 ≤ d ≤ |K|. Then we define the set of states that are

reachable by component j for all subsystems that observe i, j, k ∈ K

by Reachd(Sysi,j,k)[j] :=
⋂

K ′⊆K,s.t.i,j,k∈K ′∧|K ′|=d (Reach(SysK ′)[j] ↓ {i, j, k}).

Example 6.1

We consider a system Sys = (K, {Ai}i∈K , Int, {Ti}i∈K), where K = {1, ..., 5},

A1 = {a1}, A2 = {a2, b2, c2}, A3 = {b3, d3, e3}, A4 = {c4, d4} and A5 = {e5}.

Int = {{a1, a2}, {b2, b3}, {c2, c4}, {d3, d4}, {e3, e5}}. The local transition sys-

tems are given in Figure 6.1. Consider the following exemplary reachabilities,

where “−” stands for an arbitrary state of the corresponding component:

(q1, q
′
2, q3, q

′
4, q5) ∈ Reach(Sys)[2]; ∀j ∈ K : (−, q′2, q

′
3,−,−) 6∈ Reach(Sys)[j];

(q1, q
′
2, q

′
3) ∈ Reach3(Sys{1,2,3})[2], whereas (q1, q

′
2, q

′
3) 6∈ Reach4(Sys{1,2,3})[2]

even though (q1, q
′
2, q

′
3, q5) ∈ Reach(Sys{1,2,3,5})[2], because (q1, q′2, q′3, −) /∈

Reach(Sys{1,2,3,4})[2].

6.3 A basic sufficient Condition 119

6.3 A basic sufficient Condition

We present a parametrized polynomial-time computable sufficient condition

that can confirm local deadlock-freedom. Our algorithm is based on two

ideas: Firstly, a necessary condition for the existence of local deadlocks. If a

component j is involved in causing a local deadlock in the reachable global

state q then there must be two other components satisfying certain properties

referring to their respective enabled actions in the state q. This is similar to

an idea presented in [AC05] for systems communicating via shared variables.

The second idea is to check this predicate on an over-approximation of the

set of reachable states: As already mentioned, we consider the states that can

be reached by projecting the state space to any subsystem of size d, where d

is a parameter of the algorithm (and the degree of the polynomial describing

the cost of the algorithm). If local deadlock-freedom cannot be verified, the

algorithm reports so, in which case one has to apply other methods to further

clarify the situation. We present a nontrivial example where our algorithm

confirms deadlock-freedom while a global state space analysis would indeed

take exponential time.

Idea:

We investigate the formation of deadlock situations in a system Sys. We

assume that Sys is initially deadlock-free2, i.e., there is no deadlock in the

global starting state q0. We derive a necessary condition for deadlocks that

can be checked within subsystems and thus can be used to avoid exponential

time complexity. Then, we present the parametrized verification algorithm

in pseudo code and a short complexity analysis.

2This is a natural assumption w.r.t. reasonable system design. Anyway, a check of this

proposition is possible within polynomial time.

120 6.3 A basic sufficient Condition

Remark 6.3

Given a system Sys, we assume that the
(

n

d

)
subsystems of size d have already

been analyzed for reachability and the information (including the reachabil-

ity of a state q via a proper state change of a component j) is stored in

corresponding arrays3.

Let Sys be a system that is initially deadlock-free but contains a reachable

deadlock. This implies that in each transition sequence from the global

starting state q0 to a state q with DL(q), there is a first transition q1 α
→ q2

from a deadlock-free state q1 to a deadlock-containing state q2. We will

detect this implication (or in other words, this necessary condition) in our

subsystems and thus formulate a sufficient condition for deadlock-freedom

for the case that no such situation can be detected.

According to Definition 2.18 (p. 29), D is a local deadlock in q if ∀i ∈ D ∀α ∈

Int : (ea(qi) ∩ α 6= ∅) ⇒ (∃j ∈ D j(α) 6⊆ ea(qj)). We can formulate a locally

detectable consequence of a deadlock as described above by defining a binary

relation between local states of different components as follows.

Definition 6.8

For components i, j ∈ K and local states qi ∈ Qi, qj ∈ Qj, we say that qi

waits for qj with respect to α ∈ Int if ea(qi) ∩ α 6= ∅ and j(α) 6= ∅ but

ea(qj) ∩ α = ∅.

Definition 6.9

For components i, j ∈ K and local states qi ∈ Qi, qj ∈ Qj, we say that qi

waits for qj if ∃α ∈ Int s.t. qi waits for qj with respect to α.

3For a more thorough discussion of the complexity of computing the reachability infor-

mation for the subsystems, see Remark 6.7 (p. 130).

6.3 A basic sufficient Condition 121

Remark 6.4

Definition 6.9 may be delusive to some extent: It allows for a situation, where

for components i, j ∈ K and local states qi ∈ Qi, qj ∈ Qj we say qi waits for

qj although on the other hand, there may be some interaction {ai, aj} with

ai ∈ ea(qi) and aj ∈ ea(qj) that i and j could perform together.

In fact, the existence of an interaction α such that qi waits for qj with respect

to α implies some dependency of i on j whose evaluation should take other

aspects (like the existence of other possible synchronizations) into account.

Nevertheless, we apply the reduced terminology “qi waits for qj” for two

reasons: Firstly, it is part of the nature of sufficient conditions to assume the

worst case to ease complexity. Secondly, it helps us to keep definitions and

propositions that build on Definition 6.9 simple.

Lemma 6.3

Let Sys be an initially deadlock-free interaction system that contains a min-

imal local deadlock D ⊆ K in some reachable global state q̃. Then ∃j ∈ D

∃q ∈ Reach(Sys)[j], such that the following conditions hold:

1) ∀α ∈ Int, s.t. α ∩ ea(qj) 6= ∅ ∃k ∈ D such that k(α) 6⊆ ea(qk)

(For every interaction α, in which j could in its present state participate, j

waits for some component k ∈ D w.r.t. α).

2) ∃i ∈ D ∃α ∈ Int, s.t. α ∩ ea(qi) 6= ∅ ∧ j(α) 6⊆ ea(qj)

(In return, at least one component i ∈ D waits for j w.r.t. some interaction

in which i could in its present state participate.)

Proof:

For a reachable state q̃, there is a global transition sequence q0 α1→ q1 α2→ ...
αr→

qr = q̃. Let q := ql, where l is the minimal index with 1 ≤ l ≤ r such that D

is a deadlock in ql. If none of the components in D changed their local states

in the transition from ql−1 to q, then D would have been a deadlock in the

preceding state ql−1 already, which would be a contradiction to the choice of

122 6.3 A basic sufficient Condition

l. Thus, let j be one of the components in D with ql−1
j 6= qj.

It remains to show Conditions 1) and 2):

Condition 1 follows directly from the definition of deadlocks as j ∈ D. As-

sume that Condition 2 does not hold, i.e., j in qj does not block any other

component i ∈ D. Then D \ {j} would be a deadlock in q in contradiction

to our minimality assumption for D.

Definition 6.10

We say that a triple (qi, qj , qk) is a blocking chain if i in qi waits for j in qj

and j in qj waits for k in qk.

We relax4 Condition 1 by merely demanding the existence of some α ∈ Int.

Then we apply Remark 6.2 to formulate the following implication of the

necessary condition in Lemma 6.3 that can be observed in subsystems.

Corollary 6.2

Let Sys be an initially deadlock-free interaction system that contains a min-

imal local deadlock D ⊆ K in some reachable global state q. Then there

exist5 i, j, k ∈ D and q̂ ∈ Reach(Sys{i,j,k})[j], s.t. ∀ 3 ≤ d ≤ n:

q̂ ∈ Reachd(Sys{i,j,k})[j] and (q̂i, q̂j , q̂k) is a blocking chain.

Algorithm 2 tries to confirm the negation of the necessary condition in the

corollary and outputs “Sys is deadlock-free” if and only if it is successful in

doing so. Otherwise, it outputs “Sys might contain deadlocks”.

Complexity:

4Please note that according to our definition of interaction systems, every local state

has to enable at least one action and every action must occur in at least one interaction.

Thus, demanding the existence of an interaction as described above is indeed a relaxation

(also cf. Remark 2.6, p. 29)
5where possibly i = k may hold

6.3 A basic sufficient Condition 123

Algorithm 2 Deadlock-Freedom Verification(Sys, d)

1: for all i, j, k ∈ K do

2: for all (qi, qj, qk) ∈ Reachd(Sys{i,j,k})[j] do

3: if (qi, qj , qk) is a blocking chain then

4: write(“Sys might contain deadlocks”);

5: break;

6: end if

7: end for

8: end for

9: write(“Sys is deadlock-free”)

We assume that before the application of Algorithm 2, a preprocessing is

performed, that creates for every pair (i, j) ∈ K × K an (m × m)-matrix

wait i,j such that wait i,j[qi, qj] = 1 if qi waits for qj and wait i,j[qi, qj] = 0,

otherwise. Given such a collection of matrices, the check, whether a state

(qi, qj , qk) is a blocking chain (line 3) comes down to looking up two values

in a collection of matrices and thus can be performed in O(1).

The outer loop (1-8) of Algorithm 2 is performed (up to) n3 times. The inner

loop (2-7) considers (up to) m3 substates for each of (up to) nd−3 subsystems.

Thus, we have an overall complexity of O(m3 · nd).

Examples

In the following, we apply Algorithm 2 to two example systems. We ver-

ify deadlock-freedom for a complex parametrized example system (cf. Ex-

ample 6.2) that synchronizes triples of neighbors to perform trilaterations.

Algorithm 2 is able to handle the example, even for arbitrarily large system

size parameters by investigating subsystems of size d = 3. We also give an

example system Sys that can be proven deadlock-free with d = 4 but not

with d = 3 to display the limitations of Algorithm 2.

124 6.3 A basic sufficient Condition

Remark 6.5

Trilateration is a method for determining the intersections of three sphere

surfaces given the centers and radii of the three spheres. To accurately and

uniquely determine the relative location of an object on a surface using tri-

lateration, three reference points (in this case the vertices of the triangle

surrounding the object) are needed.

Let us imagine a system of n transmitting stations that divide a surface into

triangles, using an odd number y of rows and an odd number x of columns (cf.

Figure 6.2). Three transmitting stations that form a triangle can cooperate

in order to determine the position of an object within the triangle.

(1, 1) (1, 3)

(3, 1)

(2, 2)

(3, 3)

(2, 4)

(1, 5) (1,x-2)

(3, 5)

(2, 6)

(3,x)

(2,x-1)

(4, 2) (4, 4)

(y-2,3) (y-2,5)

(4, 6)

(y-2,x)

(4,x-1)

(y-2,1)

1

2

3

...

1 2 3 . . .

4(1,2)

4(1,3)

4(1,4)

4(1,5)

4(3,2)

4(3,3)

4(3,4)

4(3,5)

4(2,3)

4(2,4)

4(2,5)

4(3,x-1)

4(2,x-1)

4
(
2
,
x
)

4(1,x-1)

4
(
2
,
1
)

4(2,2)

(1,x)

(3,x-2)

(y-2,x-2)

(y,1) (y,3)

(y-1,2)

(y,5)

(y-1,4)

(y,x-2)

(y-1,x-1)

(y,x)

(y-1,6)

4
(
y
-
1
,
x
)

4(y-1,x-1)

4(y-2,2)

4(y-2,3)

4(y-2,4)

4(y-2,5)

4(y-1,5)
4(y-1,4)

4(y-1,3)
4(y-1,2)

4
(
y
-
1
,
1
)

4(y-2,x-1)

x-2 x-1 x

y-2

y-1

y

Figure 6.2: An area divided into triangles 4(a,b) by transmitting stations

(u, v)

6.3 A basic sufficient Condition 125

idle(u,v)

maint(u,v) p-maint(u,v)

p(u,v)(u,v-1) p-c(u,v,u,v-1)

p(u,v)(u-1,v) p-c(u,v,u-1,v)

p(u,v)(u,v+1) p-c(u,v,u,v+1)

p(u,v)(u,v)p-c(u,v,u,v)

p(u,v)(u-1,v-1)p-c(u,v,u-1,v-1)

p(u,v)(u-1,v+1)p-c(u,v,u-1,v+1)

s-c(u,v,u,v-1)

e-c(u,v,u,v-1)

s-c(u,v,u,v)

e-c(u,v,u,v)

s-c(u,v,u-1,v)

e-c(u,v,u-1,v)

s-c(u,v,u,v+1)

e-c(u,v,u,v+1)

s-c(u,v,u-1,v+1)

e-c(u,v,u-1,v+1)

s-c(u,v,u-1,v-1)

e-c(u,v,u-1,v-1)

s-maint(u,v) e-maint(u,v)

Figure 6.3: The local transition system for some (non-border) transmitting

station (u, v)

This means, every transmitting station (u, v) can participate in a job (i.e.,

a trilateration) in one of its (up to) six adjacent triangle-areas at a time or

participate in a maintenance synchronization together with the other (bx/2c

or bx/2c−1) stations on the same horizontal line. Each transmitting station is

a component (u, v) in our model and offers actions of type start, perform and

end a cooperation in a triangle (a, b), which are abbreviated by s-c(u, v, a, b),

p-c(u, v, a, b) and e-c(u, v, a, b), respectively. Also, each component (u, v)

offers actions to start, perform and end a maintenance, which are abbreviated

by s-maint(u, v), p-maint(u, v) and e-maint(u, v), respectively.

Example 6.2

The system is described by Sys(y, x) = (K, {A(u,v)}(u,v)∈K , Int, {T(u,v)}(u,v)∈K),

where:

K = {(2u + 1, 2v + 1) | 0 ≤ u ≤ y−1
2

, 0 ≤ v ≤ x−1
2
}

∪ {(2u, 2v) | 1 ≤ u ≤ y−1
2

, 1 ≤ v ≤ x−1
2
}

A(u,v) = {s-c(u, v, a, b),p-c(u, v, a, b),e-c(u, v, a, b)|4(a,b) is a triangle adjacent

126 6.3 A basic sufficient Condition

to (u, v)} ∪ {s-maint(u, v),p-maint(u, v),e-maint(u, v)}

Int : For each op ∈ {s-c,p-c,e-c} we include the interactions

{op(u1, v1, a, b), op(u2, v2, a, b), op(u3, v3, a, b)}, where

(u1, v1), (u2, v2), (u3, v3) are vertices of 4(a,b).

Also, for op ∈ {s-maint,p-maint,e-maint}, we include the interactions

{op(u1, 1), op(u1, 3), ..., op(u1, x)}, and

{op(u2, 2), op(u2, 4), ..., op(u2, x − 1)} where

u1 resp. u2 ranges over the odd resp. even numbers in {1, ..., y}.

The T(u,v)’s are depicted in Figure 6.3. Note that the transmitting stations

at the border of the area do not have 6 but less triangles to participate in,

so Figure 6.3 is exemplary only.

In the following, we prove that the algorithm is indeed able to verify (for

arbitrarily large x, y) that Example 6.2 is deadlock-free, by showing that

no subsystem Sys{i,j,k} of components i, j, k ∈ K will ever reach a state

(qi, qj , qk), such that (qi, qj, qk) is a blocking-chain:

Remark 6.6

Let a component l1 ∈ {i, j, k} be in its maintl1- (or in its pl1(a,b)-) state. In

this case, l1 offers its p-maint and e-maint (or p-c(a,b) and e-c(a,b)) actions.

For l2 ∈ {i, j, k} to block l1, l2 must possess an action that occurs in an

interaction together with one of the actions offered by l1, i.e., l2 has to share

a line with l1 (or be one of the vertices of 4(a,b)). However, as l2 is observed

in Sys{i,j,k} it must have moved to its maintl2- (or to its pl2(a, b)-) state

conjointly with l1. Thus, it offers the demanded action.

Now, assume that there is a state (qi, qj, qk) that is a blocking-chain:

Due to Remark 6.6, we may assume qi = idlei. But then, for qj to block qi,

we have qj 6= idlej . But by Remark 6.6, we know that j in qj 6= idlej cannot

be blocked by k in any qk.

6.3 A basic sufficient Condition 127

We showed that our algorithm verifies deadlock-freedom for the trilateration

example in polynomial time. Note, that the example is a non-trivial system

that could easily be modeled to contain deadlocks, e.g., (3, 3),(2, 4),(3, 5)

could wait for each other when (3, 3) is in a state where it wants to do a job

in 4(2,3) while (2, 4) wants to do a job in 4(2,5) and (3, 5) wants to do a job in

4(3,4). So firstly, it is not obvious by specification that the implementation is

deadlock-free. Secondly, the number of reachable global states of the system

is exponential (in n). Hence, any algorithm that checks some condition for

every global state would need time exponential in n. Thirdly, the system scale

is variable and it may contain arbitrarily large interactions (the maintenance

interactions’ size is linear in x). Nevertheless, to verify deadlock-freedom it

suffices to choose the parameter d = 3, i.e., to observe subsystems of size 3

only.

Example 6.3

We are now going to investigate an example of a deadlock-free system Sys,

for which our algorithm is not able to confirm deadlock-freedom when we

observe subsystems of size 3. However, when observing subsystems of size 4,

the algorithm yields the desired result.

Let us again consider Example 6.1 (p. 118), that was introduced at the end

of section 6.2. When observing the subsystem Sys{1,2,3}, we find (q1, q
′
2, q

′
3) ∈

Reach3(Sys1,2,3)[2] where 1 is blocked by 2, which is, in turn, blocked by 3.

However, no corresponding global state is reachable in the global system be-

cause the communication with component 4 prevents 2 and 3 from reaching

q′2 and q′3 simultaneously.

The problem, of course, is the lack of observation of component 4. If we apply

the algorithm with d = 4, we are indeed able to verify deadlock-freedom: The

relation R = {(q1, q
′
2), (q2, q

′
3), (q2, q

′′
4), (q

′
2, q

′′
4), (q

′
2, q

′
3), (q3, q

′
4), (q

′
3, q

′
4), (q5, q3)}

includes all pairs (qi, qj), where i in qi is blocked by j in qj. As a result, the

set of possible blocking chains is BC = {(q1, q
′
2, q

′′
4), (q1, q

′
2, q

′
3), (q2, q

′
3, q

′
4),

128 6.4 Generalizing sufficient Conditions based on local Predicates

(q′2, q
′
3, q

′
4), (q5, q3, q

′
4)}. As stated at the end of section 6.2, (q1, q

′
2, q

′
3) /∈

Reach4(Sys1,2,3)[2]. Corresponding propositions hold for all other states in

BC. The example also displays that it can be crucial to check whether a

state is reachable by a state transition that affects a certain component:

Note that (q5, q3, q
′
4), where 5 is blocked by 3 and 3 is blocked by 4 is indeed

reachable in both subsystems of size 4 that include the components 3, 4 and

5, but it is not reachable by an interaction that causes a local state change

of the middle component 3, so the state’s reachability alone will not affect

the algorithm’s success.

The presented algorithm is (even with d = 3) able to handle the complex

trilateration system (cf. Example 6.2) regardless of the choice of the pa-

rameters x, y. This means it can handle arbitrarily large synchronizations

and a reachable state space of exponential size. Our algorithm profits from

(cf. Example 6.2), but is not dependent on (cf. Example 6.1 with d = 4)

symmetric constructs. Sys displays that the problem of “inherent informa-

tion” can prevent our algorithm from verifying deadlock-freedom. This fact

is, of course, not surprising w.r.t. the complexity results established so far.

Nevertheless, the existence of non-trivial examples that cannot be verified

in polynomial time by algorithms based on global state space exploration

displays the benefit of the presented algorithm.

6.4 Generalizing sufficient Conditions based on local

Predicates

In the previous section, we gave a sufficient condition for deadlock-freedom

that was based on local predicates. While in this thesis we concentrate

on approaches for deadlock detection, we still want to point out that other

6.4 Generalizing sufficient Conditions based on local Predicates 129

properties could be treated in an analogous manner. In this section, we

generalize and to some extent formalize the presented approach.

Properties of interaction system are often defined to be equivalent to a certain

predicate P (on global states) being valid on all states6 in Reach(Sys), i.e.,

Prop(Sys) := ∀q ∈ Reach(Sys)P (q). As a consequence, the standard way

to prove such a property is to compute the reachable global state space and

check P for every global state therein. However, due to state space explosion,

this is exponentially expensive (in the number of components) in non-trivial

interaction systems. To avoid this exponential blow-up, we suggest to prove

properties on (“compressed”) over-approximations.

Remark 6.7

In Remark 6.3 (p. 120), we assume that the complexity analyses for the

various subsystems have already been performed. Analogously, we assume

for the generalization presented here that we may access for each K ′ ⊆ K

with |K ′| = d an array reach(SysK ′) (cf. Definition 6.11) that stores the

reachability information Reach(SysK ′).

We want to emphasize that the costs of such an analysis would be polynomial

in n and m. The exact costs will significantly depend on the parameter d

which determines the polynomial degree of our asymptotic time bounds. To

be more specific, if we abstract from the time costs7 that are needed to check

whether an interaction is enabled and which successor states can be reached

by different interactions the analyses of all subsystems with d components

can be performed in O(
(

n

d

)
·md) (i.e., the sum of the sizes of the state spaces,

6E.g., we call a system deadlock-free if and only if every reachable global state does

not contain a deadlock.
7Our motivation for this abstraction is the fact that – depending on the data structures

that we use to represent an interaction system – the costs for a reachability analysis of a

system may vary. Also, as the benefit of our approach lies within the decrease of a time

bound that is exponential in n to a polynomial with degree d, we are not interested in

additional factors (like, e.g., |Int|) that occur analogously in both time bounds.

130 6.4 Generalizing sufficient Conditions based on local Predicates

cf. Remark 6.1, p. 116).

It is an important aspect of our approach not to exceed these time bounds in

any follow-up technique as increasing the degree of our overall time bounds

would allow us to increase the parameter d instead, which may significantly

enhance our approximation quality.

Definition 6.11

For reasons of efficient implementation of the algorithms presented in this

chapter, we define for a subsystem SysK ′ a boolean reachability array

reach(SysK ′) of length |QK ′| that will be initialized with the characteristic

function of Reach(SysK ′) w.r.t. QK ′.

We will identify each position of reach(SysK ′) with a state in q′ ∈ QK ′. We

denote the access to the boolean that corresponds to q′ by reach(SysK ′)[q′]

where after our subsystem reachability analyses we have reach(SysK ′)[q′] =

true iff q′ ∈ Reach(SysK ′). It is easy to implement our arrays in such a way

that the index of a state q′ (of length d) can be computed in O(d).

For ease of notation, we will (in our theoretic considerations) treat reach(SysK ′)

like a set and write “q′ ∈ reach(SysK ′)” iff reach(SysK ′)[q′] = true.

Remark 6.8

Our decision to represent Reach(SysK ′) as an array (compared to a list rep-

resentation) yields a worse lower space complexity bound, namely Ω(|QK ′|)

(compared to Ω(|Reach(SysK ′)|)) but a better time bound for reachabil-

ity look-ups, namely O(1). The ability to efficiently look up the boolean

reach(SysK ′)[q′] for a substate q′ in our array representation will be impor-

tant for our Cross-Checking implementations, namely Algorithms 3 (p. 139)

and 5 (p. 158).

Idea:

The basic idea we want to apply is to prove a predicate P for a global state

q by proving a predicate P ′ for each projection q′ of q (of a certain size)

6.4 Generalizing sufficient Conditions based on local Predicates 131

such that P (q) is implied. For a single state q, this might not be reasonable,

because the workload of checking P ′ for the various projections may be larger

than the workload of checking P (q) directly.

However, we may exploit this idea in order to prove a property Prop(Sys)

in polynomial time by proceeding in three steps as follows:

• We choose a parameter d � n and calculate the reachable states for

each subsystem with d components. Each reachable substate q′ =

(qi1 , . . . , qid) is a compact representation of Ext(q′, K).

• We formulate a local indicator predicate P ′ (checkable in time polyno-

mial in n), i.e., a predicate on local states, such that the validity of P

on a global state q is implied by the validity of P ′ on the projections

of q (cf. Definition 6.12).

• We prove P ′ for all q′ ∈ Reach(SysK ′) to derive the validity of P on

all reachable global states (cf. Lemma 6.4):

[∀K ′⊆K, |K ′|=d ∀q∈Reach(Sys) : P ′(q↓K ′)]⇒P (Reach(Sys))

Definition 6.12

Given a predicate P on global states, we call a predicate P ′ a local indicator

if (for every d ≥ 3) the validity of P on a global state q is implied by the

validity of P ′ on every projection of q to d components:

[∀K ′ ⊆ K, |K ′| = d P ′(q ↓ K ′)] ⇒ P (q)

Definition 6.13

Let Sys be an interaction system, Q′ ⊆ Q a subset of the global state space

and K ′ ⊆ K a subset of the components. We call a set AK ′ ⊆ QK ′ an

approximation for Q′ with respect to K ′ if the projection (to K ′) of

every state in Q′ is in AK ′, i.e., if q ∈ Q′ ⇒ q ↓ K ′ ∈ AK ′.

The idea behind the approach sketched above is formalized in the follow-

132 6.4 Generalizing sufficient Conditions based on local Predicates

ing Lemma 6.4, where for the time being it is convenient to substitute the

sets AK ′ by Reach(SysK ′), which is clearly an approximation according to

Definition 6.13.

Lemma 6.4

Assume that we may access for each K ′ ⊆ K with |K ′| = d an approximation

AK ′ ⊆ QK ′ for Reach(Sys) w.r.t. K ′. Also, let P ′ be a local indicator for P .

Then the validity of P ′ on all substates in all AK ′ implies the validity of P

on all states in Reach(Sys), i.e.:

[∀K ′⊆K, |K ′|=d ∀q′∈AK ′ P ′(q′)]⇒P (Reach(Sys))

Proof:

∀K ′⊆K, |K ′|=d ∀q′∈AK ′ P ′(q′)
(1)
⇒ ∀q∈Reach(Sys)∀K ′⊆K, |K ′|=d P ′(q↓K ′)
(2)
⇒ ∀q∈Reach(Sys)P (q)

Clearly, (1) holds as AK ′ is an approximation of Reach(Sys) in K ′ and (2)

holds as P ′ is a local indicator for P .

Complexity:

Lemma 6.4 allows us to abstain from handling global states explicitly. In-

stead, we may now prove predicates on global states by the over-approx-

imations Reach(SysK ′). The advantage of this approach is immense: In-

stead of a complexity that is exponential in n, we have a complexity that is

polynomial (with degree d) in n and m.

Remark 6.9

There is one major drawback to our present approach:

Considering subsystems with d � n components neglects a lot of informa-

tion. Indeed, there will be many substates that are marked reachable in our

subsystem reachability tables although they do not originate by projection

from a globally reachable state. We call such substates “artifacts”. If we

6.5 Cross-Checking for Reachability 133

check condition P ′ on many such artifacts we run the risk that P ′ is vio-

lated and we cannot conclude P . We deal with this problem in the following

section.

6.5 Cross-Checking for Reachability

In Section 6.3, we saw that the choice of the parameter d greatly influences

the result of our approach. This is not surprising, as there is an obvious

trade-off between the accuracy of our reachable state space approximations

and the time needed to compute them. Given the fact that even polynomial-

time algorithms are hardly applicable in practice for large inputs once the

polynomial’s degree exceeds 6 or 7, one may on the other hand deduce that

given a certain interaction system and certain hardware, the degree of our

polynomial is fixed. We take this observation as a motivation to try and

improve the results that can be obtained by observing subsystems of a certain

size without raising the degree (i.e., d in our case) of the polynomial time

bound. In this section, we present the Cross-Checking idea that enhances the

approximation quality without exceeding the polynomial time bound given

by the reachability analyses.

Let us consider an interaction system that models Tanenbaum’s solution

[Tan08] to Dijkstra’s Dining Philosophers problem. Tanenbaum suggests

that each of the philosophers is provided with a separate semaphore that

she has to set in order to leave her thinking state. A semaphore however

can only be set if its “neighbor” semaphores are unset. Once a philosopher

has eaten, she puts back the forks and resets her semaphore. This can be

considered an elegant solution as it is symmetric and allows for maximum

efficiency (meaning that it still allows for a global state where every second

134 6.5 Cross-Checking for Reachability

philosopher is in her eating state). On the other hand, this is a deadlock-

free system with a natural interaction structure whose reachable global state

space is exponential in the number of philosophers.

This solution can be modeled as an interaction system as follows, where p is

the number of philosophers:

Example 6.4

DP (p) = (K(p), {Ai}i∈K(p), Int(p), {Ti}i∈K(p)), where

K(p) = {Phil0,. . .,Philp−1,Fork0,. . .,Forkp−1,Sem0,. . .,Semp−1,},

Int(p) =
⋃

0≤i≤p−1{{pickleftPhili, occupyForki
},{pickrightPhili, occupyForki−1

},

{priorityPhili, downSemi
, allowSemi−1

, allowSemi+1
},

{dropPhili, upSemi
, vacateForki−1

, vacateForki
}},

where calculation is modulo p, and the local behaviors Ti and (implicitly the)

port sets Ai are given in Figure 6.4. For better readability we use the index

i instead of Phili, Forki, respectively Semi.

TPhili :

think

wantsboth

wantsright wantsleft

eat

priorityi

pickleft i pickright i

pickleft ipickright i

dropi

TForki
:

vacant

occupied

occupyi vacatei

TSemi
:

up

down

downi upi

allow i

Figure 6.4: Tanenbaum’s Dining Philosophers: Local transition systems

Example 6.5

For the dining philosophers example DP (6) (i.e., |K| = 18) and d = 4 the

sum of the sizes of the investigated substate spaces is 229,095 compared

6.5 Cross-Checking for Reachability 135

to 64mio global states in the original system. Obviously, the advantage is

much greater for a larger number of philosophers as the global state space

grows exponentially in n while the sum of the sizes of the state spaces of the

subsystems grows only polynomially (with degree d) in n (cf. Remark 6.1,

p. 116).

Example 6.6

As already mentioned in the previous section, we have to deal with the prob-

lem of artifacts. For the dining philosophers example DP (6) (i.e., |K| = 18)

and d = 4, only 43,212 of the 229,095 states in the state spaces of the subsys-

tems are unreachable, which corresponds to 18.85% (cf. Figure B.1, p. 200

Appendix).

Here, we introduce Cross-Checking as a technique to eliminate artifacts.

Corollary 6.1 (p. 117) already pointed out that the straightforward approach

to make use of multiple over-approximations would be computing (for some

previously defined d) the set Intersection :=
⋂

K ′⊆K, with |K ′|=d f(Reach(SysK ′))

and thus distilling all the information that is available from our subsystem

reachability analyses. However, in our case this is simply not feasible because

firstly it seems to require the computation of the various sets f(Reach(SysK ′))

(yielding an exponential blow-up) and secondly (even if there was a sophis-

ticated way to avoid the application of f) the cardinality of Intersection is

larger or equal than the cardinality of Reach(Sys) which we wanted to avoid

in the first place.

Idea:

So basically we are bound to keep to our “encoded” approximations. Thus,

we have to accept the fact that a single reachability table reach(SysK ′) can

(in the sense of its interpretation via f) only exclude the reachability of a

136 6.5 Cross-Checking for Reachability

global state q by setting reach(SysK ′)[q ↓ K ′] = false. On the other hand, we

want to maintain our over-approximation property, i.e., we may only do so

if no global state in q’s equivalence class w.r.t. K ′, namely [q]K ′ := f(q ↓ K ′)

is in Reach(Sys). This implies that the smallest over-approximation of Inter-

section that can be encoded (w.r.t. to application of f) in a subset of QK ′ is

f(Intersection ↓ K ′).

Thus, we are interested in the set Intersection ↓ K ′ which reflects – in

the sense just discussed – the very best piece of information that can be

gathered (in the time available) from the information available so far. We

use the following observations in order to receive an over-approximation of

Intersection ↓ K ′:

Intersection ↓ K ′

= [
⋂

K̃⊆K,|K̃|=d f(Reach(SysK̃))] ↓ K ′.

⊇ [
⋂

K̃⊆K,|K̃|=d f(Reach(SysK̃) ↓ K ′)] ↓ K ′.

=1 [
⋂

K̃⊆K,|K̃|=d f(Ext(Reach(SysK̃) ↓ K ′, K ′))] ↓ K ′.

=2 f [
⋂

K̃⊆K,|K̃|=d Ext(Reach(SysK̃) ↓ K ′, K ′)] ↓ K ′.

=3
⋂

K̃⊆K,|K̃|=d Ext(Reach(SysK̃) ↓ K ′, K ′).

=4
⋂

K̃⊆K,|K̃|=d,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′).

=: Reach′(SysK ′)

The proofs of the relations ⊇ and =1 to =4 are as follows:

⊇ as for all K̃, K ′ ⊆ K, Q̃ ⊆ QK̃ we have f(Q̃ ↓ K ′) ⊇ f(Q̃).

Also, the operators intersection and projection preserve the subset-

relation.

=1 as for K ′′ ⊆ K ′ and Q′′ ⊆ QK ′′ , f(Q′′) = f(Ext(Q′′, K ′))

=2 as for Q1, Q2, . . . , Qk ⊆ QK ′,
⋂

1≤i≤k f(Qi) =
⋂

1≤i≤k(QK\K ′ × Qi)

= QK\K ′ ×
⋂

1≤i≤k Qi

= f(
⋂

1≤i≤k Qi)

6.5 Cross-Checking for Reachability 137

=3 as
⋂

K̃⊆K,|K̃|=d Ext(Reach(SysK̃) ↓ K ′, K ′) ⊆ QK ′ and

(Q′ ⊆ QK ′) ⇒ (f(Q′) ↓ K ′ = Q′)

=4 as for K̃ with K̃ ∩ K ′ = ∅ Reach(SysK̃) ↓ K ′ = {()} and thus

Ext(Reach(SysK̃) ↓ K ′, K ′) = QK ′.

Definition 6.14

Reach′(SysK ′) :=
⋂

K̃⊆K,|K̃|=d,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′).

Besides correctness, another important property of an over-approximation

is its quality, so we try to give the reader an idea to which degree our

method comprises resp. neglects information: We were able to abstain from

computing f by projecting reachable state spaces of the various subsys-

tems to K ′, which accounts to restricting our view to explicit informa-

tion about reachability for the components in K ′. As mentioned above, we

may only mark a state q′ unreachable in Reach′(SysK ′) if we are sure that

f(q′) ∩ Reach(Sys) = ∅. This knowledge may either originate from the fact

that the reachability analysis of some subsystem yields that no extension of

a substate of q′ is reachable (in which case our approximation covers that

knowledge) or it may originate from the fact that there are different subsys-

tems by which we derive the non-reachability of different states in f(q′) such

that the whole set f(q′) is covered (in which case our approximation does

not cover that knowledge).

Remark 6.10

We want to compute, for each K ′ ⊆ K, |K ′| = d, the set Reach′(SysK ′). The

direct approach to do this would mean looping over all subsystems K ′ and

for each K ′ loop over all subsystems K̃. As this would yield at least costs

Ω(
(

n

d

)
·
(

n

d

)
) it would raise the degree of the polynomial that hitherto was an

upper complexity bound. This in turn gives rise to the (legitimate) question

138 6.5 Cross-Checking for Reachability

if it would not be more suitable to observe subsystems of size 2d in the first

place and forget about this enhancement technique.

However, we will show that we can compute the various sets Reach′(SysK ′)

in strictly less time than it would take to even increment parameter d to

d+1, i.e., our approach can be performed in o(
(

n

d+1

)
·md+1) (cf. Remark 6.7,

p. 130). The computation is performed by Algorithm 3 (p. 139) and we refer

to this method by reachability Cross-Checking.

Explanation of Algorithm 3:

For reasons of efficiency, Algorithm 3 does not loop over the various sets

Reach(SysK ′) and the therein reachable substates but rather over all states

in {q′′ ∈ Subs(K) | |q′′| < d}. Looping over these substates is realized via

the three outer for-loops (Line 1, Line 2 and Line 3). For a state q′′, we

decide (by looking up the reachability flags of its extensions in the various

tables reach(SysK ′)) whether its reachability can be refuted (Lines 5 to 11).

If this is the case, we set all reachability flags of all extensions of q′′ to false

(Lines 13 to 17).

Example 6.7

Let K ′ = {Phil1, Phil2, F ork1, F ork2}. In DP (6)K ′, we are able (by per-

forming the interactions {priority1} and {priority2}) to reach the substate

q′ = (priorityPhil1, priorityPhil2, vacantFork1
, vacantFork2

). However, if we

consider the projection q′′ = (priorityPhil1, priorityPhil2) of q′ and its occur-

rence in the subsystem that is induced by K ′′ = {Phil1, Phil2, Sem1, Sem2}

we learn that no extension of q′′ is in Reach(DP (6)K ′′). Thus, we can re-

move q′ from Reach(DP (6)K ′) still preserving the fact that the set is an

approximation for Reach(DP (6)) w.r.t. K ′.

For p = 6 and d = 4, after the first application of Cross-Checking for the sub-

system reachabilities, we will have marked 147,561 of the 229,095 substates

unreachable. This corresponds to 64.41% (cf. Figure B.1, p. 200 Appendix).

6.5 Cross-Checking for Reachability 139

Algorithm 3 Reachability Cross-Checking (Sys, d)

1: for x := 1 to (d − 1) do

2: for all subsets K ′′ = {i1, . . . , ix} of K do

3: for all q′′ = (qi1 , . . . , qix) ∈ QK ′′ do

4: reachable := true;

5: for all subsystems SysK ′ with K ′′ ⊆ K ′ (and |K ′| = d) do

6: occurrence := false;

7: for all q′ ∈ Ext(q′′, K ′) do

8: occurrence := occurrence OR reach(SysK ′)[q′];

9: end for

10: reachable := reachable AND occurrence;

11: end for

12: if reachable = false then

13: for all subsystems SysK ′ with K ′′ ⊆ K ′ (and |K ′| = d) do

14: for all q′ ∈ Ext(q′′, K ′) do

15: reach(SysK ′)[q′)] := false;

16: end for

17: end for

18: end if

19: end for

20: end for

21: end for

Lemma 6.5

Algorithm 3 – Reachability Cross-Checking – computes the sets Reach′(SysK ′)

for all subsystems SysK ′ with d components in an overall amount of time that

is in O(d · nd · md).

140 6.5 Cross-Checking for Reachability

Proof:

Correctness of Algorithm 3 - reachability Cross-Checking :

Here, we show that after the application of Algorithm 3, we have reach′(SysK ′) =

Reach′(SysK ′) for each subsystem SysK ′.

Reach′(SysK ′) =
⋂

K̃⊆K,|K̃|=d,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′) projects the

various sets Reach(SysK̃) to K ′, extends them to K ′, and builds the intersec-

tion. In other words, a state q′ ∈ reach(SysK ′) is removed from reach(SysK ′)

if and only if there is a subsystem SysK̃ whose projection’s extension does

not include q′. This however is the case if and only if no state in Reach(SysK̃)

is an extension of a projection of q′.

More formally put:

Reach′(SysK ′)

=
⋂

K̃⊆K,|K̃|=d,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′)

= Reach(SysK ′) ∩
⋂

K̃⊆K,|K̃|=d,K̃ 6=K ′,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′)

=1 Reach(SysK ′) \
⋃

K̃⊆K,|K̃|=d,K̃ 6=K ′,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′)

=2 Reach(SysK ′) \
⋃

K̃⊆K,|K̃|=d,K̃ 6=K ′,K̃∩K ′ 6=∅ Ext(Reach(SysK̃) ↓ K ′, K ′)

=3 Reach(SysK ′) \
⋃

K̃⊆K,|K̃|=d,K̃ 6=K ′,K̃∩K ′ 6=∅ Ext(Refutable(K ′, K̃), K ′)

Remark 6.11

In =1, set complement is w.r.t. QK ′.

In =2, set complement is w.r.t. QK ′∩K̃ .

In =3, we substitute Reach(SysK̃) ↓ K ′ according to Definition 6.15.

Definition 6.15

We call the set Reach(SysK̃) ↓ K ′ = QK ′∩K̃ \ Reach(SysK̃) ↓ K ′ the set of

states that are refutable for K ′ due to K̃.

Refutable(K ′, K̃) := QK ′∩K̃ \ Reach(SysK̃) ↓ K ′.

Further let the set of substates that are refutable due to K̃ comprise all states

that are are refutable for some K ′ due to K̃.

Refutable(K̃) :=
⋃

K ′⊆K,|K ′|=d Refutable(K ′, K̃).

6.5 Cross-Checking for Reachability 141

Based on the definitions and equations presented above, we are now able

to render the idea of Remark 6.10 more precisely and thereby explain, why

Algorithm 3 works correctly:

According to the notions above, we want to remove from every set Reach(SysK ′)

and for all respective K̃ ⊆ K the extensions of Refutable(K ′, K̃) in K ′. The

naive approach to do so would be to loop over the sets K ′.

However, we receive the same results by looping over all substates q′ ∈

Subs(K) with a maximum length d and checking whether q′ is refutable

due to some K̃ (i.e., whether q′ ∈ Refutable(K̃)). If this is the case then we

mark all extensions of q′ is unreachable in the respective subsystems where

q′ occurs.

Complexity Analysis of Algorithm 3 - reachability Cross-Checking :

Algorithm 3 prevents looping over all lines in our tables, but instead loops

over all possible substates qsub (of size 1 to d-1) and checks for every such

substate, whether it occurs at least once in every subsystem to which it fits

(Line 5-Line 11). The outer loop [1-21] is performed for any x in {1, . . . , d−1}.

The second loop [2-20] ranges over
(

n

x

)
≤ nx subsets.

In the third loop [3-19], we may choose a local state for each of the x com-

ponents, for which we have an upper bound mx.

The pairs of inner loops [5-11 and 13-17] look identical:

First, we extend the subsystems to d components, for which there are
(

n−x

d−x

)

≤
(

n

d−x

)
possibilities.

Second, we choose local states for d−x new components, for which there are

≤ md−x possibilities. The overall complexity of Algorithm 3 is bounded by

O(
∑d−1

x=1

(
n

x

)
·
(

n−x

d−x

)
· mx · md−x) = O(d · nd · md)

Remark 6.12

Apart from the factor d (which can be considered a constant), our Cross-

142 6.6 An advanced sufficient Condition

Checking algorithm remains within the asymptotic time bounds already given

by the first step of performing the reachability analyses of the subsystems.

We consider this to be an important property, as any refinement approach

that attempts to increase the number d of considered components would

instead result in a polynomial time bound with a higher degree.

Remark 6.13

Note that Algorithm 3 may be applied iteratively to the result of the previous

application thus further reducing the number of states that are marked reach-

able until we reach a fix point. It is an open question how many iterations

will be needed at most.

Remark 6.14

Please note that the various sets Reach′(SysK ′) are still approximations for

Reach(Sys) according to Definition 6.13 (p. 131). Thus, all preconditions for

Lemma 6.4 still hold when we substitute the sets AK ′ by Reach′(SysK ′). In

other words, the increased approximation quality that we obtain be applica-

tion of Algorithm 3 does not affect the validity of our approach.

6.6 An advanced sufficient Condition

Deadlock-freedom is an important property in itself and in addition estab-

lishing safety properties can be reduced to establishing deadlock-freedom

[GW92]. In this section, we present a more sophisticated approach of prov-

ing a system deadlock-free. In contrast to the first approach presented in

Section 6.3 we no longer apply a static predicate but one that takes the pa-

rameter d into account: We will see that small local deadlocks D of size

|D| ≤ d can be identified directly, while for large deadlocks we have to rely

on other indications. In accord with our formalizations so far (and especially

to be able to apply Lemma 6.4, p. 132) we do not define a single predicate

6.6 An advanced sufficient Condition 143

P ′ that refutes the existence of deadlocks but instead split up the property

of deadlock-freedom in two properties each of which will be proven by an

appropriate predicate P ′. We start out with the definitions for (minimal)

small and large deadlocks.

Definition 6.16

When we compute the subsystem reachability information as first described

in Section 6.3 we choose a value for the parameter d. We call local deadlocks

D with |D| ≤ d small local deadlocks and local deadlocks D with |D| > d

large local deadlocks.

Definition 6.17

Analogously to our definition of the predicate DL (cf. Definition 2.20, p. 30)

we define the predicates DLSmall and DLLarge on states by

DLSmall(q) = true iff q contains a small deadlock

DLLarge(q) = true iff q contains a minimal large deadlock.

We overload our notions to refer to states as well as interaction systems by

the following definitions.

Definition 6.18

DLSmall(Sys) = true if ∃q ∈ Reach(Sys) DLSmall(q)

DLLarge(Sys) = true if ∃q ∈ Reach(Sys) DLLarge(q)

The straightforward observation that a system that contains neither a small

nor a large deadlock, does not contain any deadlock is formalized in the

following proposition.

Proposition 6.1

¬DLSmall(Sys) ∧ ¬DLLarge(Sys) ⇒ Sys is deadlock-free.

144 6.6 An advanced sufficient Condition

In this section, we present two locally checkable predicates RefSmall and

RefLarge that refute the existence of small resp. large deadlocks by the follow-

ing implications (which are established in the consecutive sections as Lem-

mas 6.6, p. 145 and 6.9, p. 150):

∀K ′ ⊆ K, |K ′| = d RefSmall(q ↓ K ′) ⇒ ¬DLSmall(q)

∀K ′ ⊆ K, |K ′| = d RefLarge(q ↓ K ′) ⇒ ¬DLLarge(q)

Clearly, both implications are instances of the implication in Definition 6.12

(p. 131). I.e., RefSmall and RefLarge are local indicator predicates, and we can

thus apply Lemma 6.4 (p. 132) to conclude

∀K ′ ⊆ K, |K ′| = d ∀q′ ∈ Reach(SysK ′) RefSmall(q
′) ⇒ ¬DLSmall(Sys),

respectively

∀K ′ ⊆ K, |K ′| = d ∀q′ ∈ Reach(SysK ′) RefLarge(q
′) ⇒ ¬DLLarge(Sys).

In the following subsections, we will define these predicates RefSmall and

RefLarge, such that they comply with the implications given above and allow

us to prove a system deadlock-free. When we traverse the reachable substates

in the various sets Reach(SysK ′) we will be able to identify small deadlocks

directly, whereas the existence of large deadlocks will have to be excluded by

a sufficient condition.

6.6.1 Defining and checking a Condition for small Deadlocks

In order to prove that a global state q does not contain a small local deadlock,

we may simply check that neither of its substates of size 2 to d is a local

deadlock. We formalize this in the following definition.

Definition 6.19

We define the predicate RefSmall by

RefSmall(q
′) = ¬DL(q′)

6.6.1 Defining and checking a Condition for small Deadlocks 145

The predicate RefSmall now satisfies the following Lemma 6.6 as we already

assumed in the previous section.

Lemma 6.6

∀K ′ ⊆ K, |K ′| = d RefSmall(q ↓ K ′) ⇒ ¬DLSmall(q)

Proof:

Assume that DLSmall(q) holds, i.e., ∃D ⊆ K, |D| ≤ d, such that D is a

deadlock in q. Then obviously, D is also a deadlock in any q ↓ K ′ with

D ⊆ K ′ and there exists at least one such K ′ with |K ′| = d.

Complexity:

When we apply Lemma 6.4, it is again infeasible to check all 2d subsets of

every substate of every subsystem, because this would yield up to 2d ·
(

n

d

)
·

md loop cycles in the first place. Hence, we avoid looping over the arrays

reach(SysK ′) and checking for every q′ with reach(SysK ′)[q′] = true and for

every projection q′′ of q′ whether q′′ is a local deadlock (which would yield
(

n

d

)
·md·2d checks). Instead, we loop over the substates in {q′ ∈ Subs(K) | 2 ≤

|K(q′)| ≤ d} and check whether some extension of q′ is marked reachable in

some reach(SysK ′). If this is the case, we check whether q′ is a deadlock.

(For a detailed algorithm that checks for small deadlocks see Algorithm 6,

p. 202, Appendix.)

Example 6.8

When we apply our check for small deadlocks to the system DP (6) (with

d = 4) we find out that there are no reachable small deadlocks, even without

the application of Cross-Checking.

146 6.6 An advanced sufficient Condition

6.6.2 Defining a Condition for minimal large Deadlocks

Obviously, we cannot directly identify a large local deadlock of Sys by ob-

serving only d components. Instead, we are going to formulate a necessary

condition MinLarge for the existence of a minimal large deadlock which we

will then transform into a sufficient condition for freedom of minimal large

deadlocks by negation. In order to define MinLarge, we are first going to con-

sider the nature of minimal large deadlocks in order to derive some indicators

for their existence.

Definition 6.20

Given a system Sys and a substate q′ ∈ Subs(K), we define the (bipartite)

participation graph GPart(q
′) = (V1] V2, E1] E2), where

V1 = {q′i | i ∈ K(q′)},

V2 = {α ∈ Int |
⋃

q′i∈V1
ea(q′i) ∩ α 6= ∅},

E1 = {(q′i, α) ∈ V1 × V2 | ea(q′i) ∩ α 6= ∅}, and

E2 = {(α, q′j) ∈ V2 × V1 | (α ∩ Aj) 6⊆ ea(q′j)}.

The distinction of edges in E1 and E2 is irrelevant for the notion of bipar-

titeness but is made for easier interpretation. E1 induces the possibilities of

interactions, whereas E2 induces the obviations.

Example 6.9

Let us consider DP (k) with k ≥ 3 and a global state q, where8

q ↓ {Phil1, F ork1, Phil2, F ork2, Phil3} =

(wantsleftPhil1
, occupiedFork1

,wantsbothPhil2, occupiedFork2
,wantsrightPhil3

).

In this case, D = {Phil1, F ork1, Phil2, F ork2, Phil3} is a minimal local dead-

lock in q. The bipartite graph GPart(q
′) for D is given in Figure 6.5, where

oval nodes belong to V1 and rectangular nodes belong to V2.

8In fact, no such q will be reachable in DP (k).

6.6.2 Defining a Condition for minimal large Deadlocks 147

wantsleftPhil1
occupiedFork1

wantsbothPhil2 occupiedFork2
wantsrightPhil3

{pick left, get picked} {pick right, get picked} {pick left, get picked} {pick right, get picked}

{put back, up, get dropped, get dropped}

{put back, up, get dropped, get dropped} {put back, up, get dropped, get dropped}

{put back, up, get dropped, get dropped}

Figure 6.5: The Graph GPart for the Deadlock D given in Example 6.9

Proposition 6.2

Let Sys be an interaction system, and let q be a global state such that a set

D ⊆ K is a deadlock in q. Then, every node v ∈ V2 has at least one ingoing

edge from a (predecessor) node x ∈ V1 and at least one outgoing edge to a

(successor) node y ∈ V1.

Proof:

The existence of x follows from the analogous definitions of V2 and E1. The

existence of y follows from the fact that D is a deadlock: If there was a node

v without such an outgoing edge it would represent an enabled interaction.

Lemma 6.7

If D is a minimal local deadlock in q then GPart(q ↓ D) is strongly connected,

i.e., for every pair u, v ∈ V there is a path from u to v in GPart(q ↓ D).

Proof:

Let D be a minimal local deadlock in a state q such that Lemma 6.7 does

not hold. Let u, v ∈ V such that v is not reachable from u. W.l.o.g., we as-

148 6.6 An advanced sufficient Condition

sume u, v ∈ V1, otherwise we substitute (according to Proposition 6.2) u by

one of its corresponding successor nodes y and v by one of its corresponding

predecessor nodes x.

Now, let U be the set of nodes that are reachable from u in GPart(q ↓ D).

On the one hand, D′ := U ∩ D is a deadlock in q. This is obvious, as for all

components in D′ all interactions they could participate in (i.e., their direct

successor nodes in V2) require the participation of some other component in

D′ whose corresponding action is not enabled.

On the other hand, due to u ∈ D′, D′ contains at least one component. Due

to v ∈ D \ D′, D \ D′ also contains at least one component.

Hence, D′ (D is a deadlock in q in contradiction to our minimality assump-

tion for D.

We build on Definition 6.9 (p. 120) to refine the idea of blocking chains

which is used in Algorithm 2 (p. 123). We will derive a dynamic predicate

from the static predicate that investigated relations between triples of com-

ponents. In order to do so we assign to a global state q (resp. a substate q′)

a directed graph as follows.

Definition 6.21

For a system Sys and a global state q we define the waiting graph GWait(q) =

(V, E) by:

V = {qi | 1 ≤ i ≤ n} and E = {(qi, qj) ∈ V × V | qi waits for qj}.

For K ′ ⊆ K and a corresponding substate q′ = q ↓ K ′ we denote by GWait(q
′)

the subgraph of GWait(q) generated by V ′ = {qi ∈ V | i ∈ K ′}.

Example 6.10

The waiting graph GWait(q
′) for the local deadlock q′ given in Example 6.9

is given in Figure 6.6.

6.6.2 Defining a Condition for minimal large Deadlocks 149

wantsleftPhil1
occupiedFork1

wantsbothPhil2 occupiedFork2
wantsrightPhil3

Figure 6.6: GWait(q
′) for the deadlock K(q′) given in Example 6.9

Remark 6.15

According to Definitions 6.8 and 6.9 one can view GWait(q
′) as an abstrac-

tion of GPart(q
′). We obtain GWait(q

′) from GPart(q
′) by introducing an edge

(v1, v
′
1) ∈ V1 × V1 iff ∃v2 ∈ V2 (v1, v2) ∈ E ∧ (v2, v

′
1) ∈ E. Then we remove

the nodes in V2 and the original edges of GPart(q
′).

By Remark 6.15 and Lemma 6.7 we may deduce the strong connectedness of

GWait(q
′).

Corollary 6.3

Let D be a minimal local deadlock in q. Then, GWait(q ↓ D) is strongly

connected.

Lemma 6.8

Given a strongly connected graph G = (V, E), there is, for any k ≤ |V | a

subset V ′ ⊆ V , |V ′| = k with an induced subgraph G ↓ V ′ = (V ′, E ′) such

that there is a mapping order: V ′ → {1, . . . , k} that satisfies for all u, v ∈ V ′

the implication

order(u) < order(v) ⇒ (u, v) ∈ E ′∗,

where E ′∗ denotes the transitive closure of E ′.

Definition 6.22

In Definition 6.9 (p. 120), we defined the waiting relation between local states

of (different) components. Here, we formalize the very same notion.

Let wait := {(qi, qj) ∈
⋃

i∈K Qi ×
⋃

j∈K Qj | qi waits for qj}.

150 6.6 An advanced sufficient Condition

Let wait∗ denote the transitive closure of wait.

Corollary 6.3 and Lemma 6.8 imply that for any large deadlock q′ there is a

subset K ′ ⊂ K(q′), |K ′| = d, for which we will be able to detect (in at least

one subsystem) a pattern as described in the following theorem.

Theorem 6.1

Given a reachable global state q and a minimal large deadlock D ⊆ K, then

there is a subset K ′ ⊆ D (with |K ′| = d) such that MinLarge(q ↓ K ′), where

MinLarge(q′) := ∃ order : K ′ → {1, . . . , d}:

order(i) = x ∧ order(j) = x + 1 ⇒ (qi, qj) ∈ wait∗

As already mentioned at the beginning of this section, we may now use the

necessary condition MinLarge to define – by negation – a sufficient condition

for freedom of minimal large deadlocks.

Definition 6.23

We define the predicate RefLarge by

RefLarge(q
′) = ¬MinLarge(q′)

From the observations presented above, we deduce the following lemma.

Lemma 6.9

RefLarge is a local indicator predicate for freedom of minimal large deadlocks:

∀K ′ ⊆ K, |K ′| = d RefLarge(q ↓ K ′) ⇒ ¬DLLarge(q).

Definition 6.24

We combine the predicates RefSmall and RefLarge to a new predicate P ′ by

P ′(q′) = RefSmall(q
′) ∧ RefLarge(q

′).

6.6.3 Complexity of checking our Condition for large Deadlocks 151

Corollary 6.4

By Lemmas 6.6 and 6.9 and Proposition 6.1, we may conclude that P ′ as

defined in Definition 6.24 is a local indicator predicate for deadlock-freedom.

Example 6.11

When we apply P ′ (for DP (6) with d = 4) to the reachable state spaces

Reach(SysK ′) that we computed in the first place, we will detect 1,584 (of

185.883 reachable) substates for which P ′ is not valid.

One of these states (that violates RefLarge) is q′ = (vacantFork1
, thinkPhil2 ,

occupiedFork6
, downSem1

), where we detect the waiting order (Fork6, F ork1,

Phil2, Sem1). The interpretation of this output is that we consider it possi-

ble that there might for example be a fifth (presently unobserved) component

j for which Sem1 waits and which itself waits for Fork6. This cyclic pattern

of waiting might be a minimal large deadlock.

Applying P ′ (for DP (6) with d = 4) to the modified reachable state spaces

Reach′(SysK ′) that we obtain after applying reachability Cross-Checking,

the number of substates for which P ′ is not valid decreases to 432 (of 81,534

reachable states).

These numbers induce that among the substates whose reachability was re-

futed via Cross-Checking there are indeed critical ones. Even more, the

percentage of reachable substates that are critical has decreased. This is due

to a tendency in our approach to leave uncritical substates marked reachable.

6.6.3 Complexity of checking our Condition for large Deadlocks

In order to check the predicate MinLarge on a substate q′ we need to

a) Compute the waiting graph for q′,

b) Apply the transitive closure to E,

c) Check whether the components K(q′) can be ordered as described

above.

152 6.6 An advanced sufficient Condition

Under the assumption that we computed a (n · m × n · m)-matrix W with9

W (qi, qj) = 1 if qi waits for qj and W (qi, qj) = 0 otherwise as a preprocessing,

all of these steps can be computed in O(d3) as follows:

• For a substate q′, we simply create a d× d-matrix W (q′) that contains

the wait relation for q′ and fill it by copying the relevant information

from our matrix W . This can be done in O(d2).

• W ∗(q′) can be computed (using Warshall’s algorithm) in O(d3).

• We apply Algorithm 4 which also runs in O(d3).

Algorithm 4 tries to find a local state qi (respectively a component i)

in GWait(q
′) from which all other states can be reached. Then it tries

to find a state from which all remaining (not yet ordered) states are

reachable and so on. Whenever such a state cannot be found we abort.

We return the order when all components are ordered.

Algorithm 4 - Correctness:

It is obvious that if the Procedure Order is not aborted then a returned order

suffices our requirements. We show that if there is a linear order as described

in Theorem 6.1, then Procedure Order will find one.

Note that if there is a linear order of the components in K ′ as described in

Theorem 6.1 then this also holds for every subset of K ′ (w.r.t. the graph

GWait(q
′)). This means in every step of Procedure Order, we can choose the

next component for the linear order, and it is always guaranteed that the

linear order so far can be extended (by a linear order of the remaining com-

ponents) to a correct linear order for all d components.

Algorithm 4 - Complexity:

The while-loop is performed up to d times. In the while-loop, we determine

9The matrix W includes for every substate q′ the information about GWait(q
′).

6.7 Cross-Checking for Uncriticalness 153

Algorithm 4 Procedure Order(GWait(q
′))

1: queue order = new queue();

2: remain = K(q′);

3: while order.length 6= d do

4: Find some i ∈ remain from which all j ∈ remain are reachable.

5: if such a component i can be found then

6: order.enqueue(i);

7: remain = remain \{i};

8: else

9: abort;

10: end if

11: end while

12: return order;

the next component in our linear order by examining for each of the d com-

ponents, if the remaining (not yet ordered) components are reachable from

it. This check simply accounts to looking up (up to) d entries in the matrix

W ∗(q′).

Thus, the Procedure Order can be performed in an overall time in O(d3).

6.7 Cross-Checking for Uncriticalness

In the previous section, we defined a locally checkable predicate P ′ that –

when valid on all reachable substates in the various sets Reach′(SysK ′) –

indicates that Sys is deadlock-free. By applying P ′, we may consider a state

“critical” (i.e., to be a potential deadlock or a part of one) for two reasons:

Either we detect a small deadlock in it, or we deem it might be part of a

154 6.7 Cross-Checking for Uncriticalness

minimal large deadlock10.

For the example DP (6), this more sophisticated approach only considers

< 1% of the reachable states (with d = 4) as potentially deadlock-containing.

Also, it harmonizes well with our Cross-Checking approach: After Cross-

Checking the relative amount of potentially deadlock-containing states even

decreases to 0.5% (cf. Figure B.1, p. 200 Appendix).

In order to decrease the number of critical states even further, we are in-

terested in additional checks that rule out the possibility that a substate q′

may be part of a large deadlock. In this section, we present a variant of the

Cross-Checking algorithm that checks whether we can guarantee (even in our

restricted subsystem view) that an interaction will be enabled in a substate

that was hitherto considered to (potentially) be part of a large deadlock.

Definition 6.25

Let Sys be an interaction system and let SysK ′ with K ′ ⊆ K be an induced

subsystem. Then we say that q′ ∈ QK ′ enables an original11 interaction

α, denoted by q′
α
→Int if ∃q′′ ∈ QK ′ α ∈ Int q′

α
→ q′′.

It is a straightforward observation that whenever some q′ enables an original

interaction, we can mark q′ uncritical w.r.t. to large deadlocks. (I.e., there

is no deadlock D with K(q′) ⊆ D in any extension of q′.)

Example 6.12

Applying P ′ (for DP (6) with d = 4) to the state spaces Reach′(SysK ′) that

we obtain after applying Cross-Checking, the number of substates for which

P ′ (including the check whether a substate allows for the performance of an

10It is natural that the latter case contains a higher degree of “uncertainty” and our

case studies show that indeed the predicate RefLarge is violated more often than RefSmall.
11Please note that the definition denotes some α ∈ Int (not IntK(q′)). So by original

interaction we refer to an interaction that has not been affected by projection to K ′.

6.7 Cross-Checking for Uncriticalness 155

original interaction) is not valid decreases to 408 (of 81,534 reachable states).

One of the 432 remaining states (for which P ′ is not valid) from Example 6.11

(p. 151) is q′ = (wantsleftPhil1
, vacantFork1

, thinkPhil2, downSem1
), where the

detected waiting order is (Fork1, Phil2, Sem1, Phil1). However, in this state

the original interaction (pickleftPhil1
, occupyFork1

) may be performed. Thus,

q′ cannot be a part of a deadlock (esp. not a minimal large one) and does not

appear among the critical states that remain when we check this additional

condition.

It would now be straightforward to check this additional condition for every

substate that is marked reachable in the various subsystems. Instead, con-

sidering again the lack of information of subsystems and the way we used

Cross-Checking to enhance the quality of the state space approximations we

make the following more ubiquitous observation:

Remark 6.16

Let K ′ ⊆ K and q′ ∈ QK ′. Even if q′ is not able to perform an original inter-

action we might still be able to refute that q′ is a part of some minimal large

deadlock by taking into account the local states of q′ and their correlation

with the local states of components that are presently not observed (i.e., that

are not in K ′). Namely, if there is a substate q′′ of q′ and a subset K ′′ ⊆ K

with K(q′′) ⊆ K ′′ such that all reachable extensions of q′′ in SysK ′′ allow for

the performance of an original interaction in which some component of K ′

participates, then there is no reachable global state q such that K ′ is part of

a deadlock in q.

Example 6.13

As stated in Example 6.11 (p. 151), when we apply P ′ (for DP (6) with d = 4)

to the reachable state spaces Reach′(SysK ′) that we obtain after applying

Cross-Checking, the number of substates for which P ′ is not valid is 432.

One of these states is q′ = (vacantFork1
, thinkPhil2, occupiedFork6

, downSem1
),

156 6.7 Cross-Checking for Uncriticalness

where our Procedure Order detected the waiting order (Fork6, F ork1, Phil2,

Sem1). Now let us consider the substate q′′ = (vacantFork1
, thinkPhil2 ,

downSem1
) of q′ and the subsystem SysK ′′ with K ′′ = {Phil1, F ork1, Phil2,

Sem1} in which q′′ occurs (namely the subsystem from Example 6.12).

The only extensions of the substate q′′ that are in Reach′(SysK ′′) are the

states q̂′′1 = (wantsbothPhil1, vacantFork1
, thinkPhil2 , downSem1

) and q̂′′2 =

(wantsleftPhil1
, vacantFork1

, thinkPhil2, downSem1
). Note that both of them

enable the original interaction α = {pickleft1, occupy1} ∈ Int, in which Fork1

participates.

So for every globally reachable state q with q ↓ {Fork1,Phil2, Sem1} some

component in K ′ = {Fork1, Phil2, Sem1} is able to participate in an enabled

interaction. Thus, the extension q′ = (vacantFork1
, thinkPhil2 , occupiedFork6

,

downSem1
) of q′′ cannot be a part of a deadlock.

Our aim is to incorporate the idea of Remark 6.16 into our locally checkable

predicate RefLarge in such a way that it is still an indicator predicate (cf.

Lemma 6.9, p. 150). To do so we first give an auxiliary definition.

Definition 6.26

For a state q′ in a subsystem SysK ′ and a subset K ′′ ⊆ K ′ we say K ′′ may

participate in some original interaction (denoted by the boolean value

part pos(SysK ′[q′], K ′′)) iff

• q′ /∈ Reach(SysK ′) (i.e., q′ is not reachable in SysK ′) or

• q′
α
→Int ∧

⋃
i∈K ′′ i(α) 6= ∅

Now, we can formalize a locally checkable Uncritical predicate for freedom

of minimal large deadlocks of a state q as follows.

Definition 6.27

Uncritical(q′) :=

∃K ′′ ⊆ K(q′) ∃K ′ ⊇ K ′′ |K ′| = d ∀q′′ ∈ Ext(q′, K ′) part pos(SysK ′[q′′], K ′′)

6.7 Cross-Checking for Uncriticalness 157

Definition 6.28

We redefine the predicate RefLarge that was first defined in Definition 6.23

(p. 150) by

RefLarge(q
′) = ¬MinLarge(q′) ∨ Uncritical(q′)

It is obvious that this redefinition maintains the validity of Lemma 6.9

(p. 150), so we can refute the criticalness of a state by checking the predicate

Uncritical. In order to check the predicate Uncritical for all states in our

sets Reach′(Sys′K), we apply again the general approach that was used in

Algorithm 3, i.e., we loop over all substates q′ of size ≤ d and check for

all subsystems SysK ′ with q′ ∈ Subs(K ′) whether there is at least one K ′

such that all extensions in Reach′(Sys′K) enable some interaction in which a

component in K(q′) participates. If this is the case, we mark all extensions

of q′ of length d uncritical in all subsystems SysK ′ with q′ ∈ Subs(K ′).

Example 6.14

When we apply P ′ (for DP (6) with d = 4) to the reachable state spaces

Reach′(SysK ′) that we obtained after applying Cross-Checking, the number

of substates for which P ′ is not valid was 432 (of 81,534 substates in the

various Reach′(SysK ′)).

If we apply P ′ to only those states that remain unmarked by our uncritical-

ness Cross-Checking, the number of critical substates we find is reduced to

24 (of 81,534) (= 0.03%, cf. Figure B.1, p. 200 Appendix). When we resolve

these 24 crticial substates up to symmetry the number of critical substates

decreases to 2.

Remark 6.17

We have not yet mentioned in which way we want to incorporate Algorithm 5

into our overall approach. However, the redefinition of our predicate RefLarge

to exclude the existence of large deadlocks (cf. Definition 6.28, p. 157) where

158 6.7 Cross-Checking for Uncriticalness

Algorithm 5 Uncriticalness Cross-Checking(Sys, d, reach)

1: for x := 1 to (d − 1) do

2: for all subsets K ′′ = {i1, . . . , ix} of K do

3: for all q′′ = (qi1 , . . . , qix) ∈ QK ′′ do

4: uncritical := false;

5: for all subsystems SysK ′ with K ′′ ⊆ K ′ (and |K ′| = d) do

6: refute := true;

7: for all q′ ∈ Ext(q′′, K ′) do

8: refute := refute AND part pos(SysK ′[q′], K ′′);

9: end for

10: uncritical := uncritical OR refute;

11: end for

12: if (uncritical) then

13: for all subsystems SysK ′ with K ′′ ⊆ K ′ (and |K ′| = d) do

14: for all q′ ∈ Ext(q′′, K ′) do

15: critical(SysK ′)[q′] := false;

16: end for

17: end for

18: end if

19: end for

20: end for

21: end for

we simply compose MinLarge and Uncritical with the ∨-operator accounts

for the fact that the order in which we apply the algorithms is not important.

In order to clear things up, let us assume that we apply our check for uncrit-

icalness directly after the check for small deadlocks. Also, it is unnecessary

to introduce a flag critical whose existence is assumed in Algorithm 5, but

6.8 Restriction to connected Subsystems 159

instead simply set the reachability flag of a substate q′ that we want to

mark uncritical to false in our reachability arrays. We will refer to the thus

computed arrays, respectively sets by Reach′′(SysK ′). By doing so, we pre-

vent uncritical states from being processed in the concluding check for large

deadlocks.

6.8 Restriction to connected Subsystems

Note that for the purpose of deadlock detection we may restrict our attention

to systems that are connected in a topological sense (as for an unconnected

system it is convenient to prove its connected parts deadlock-free). However,

if the original interaction system is connected, we may restrict all computa-

tions so far to connected subsystems. In order to formulate this proposition

more exactly, we are going to introduce some notions first.

Definition 6.29

For an interaction system Sys we define the interaction graph GInt = (V, E)

by V := K and E := {{i, j} | ∃α ∈ Int (α ∩ Ai 6= ∅ ∧ α ∩ Aj 6= ∅)}

We call an interaction system connected if its interaction graph is con-

nected.

Example 6.15

Figure 6.7 sketches the interaction graph for a large instance of Tanenbaum’s

dining philosophers, where the squares in the outer ring represent philoso-

phers alternating with forks and the squares in the inner ring represent the

semaphores.

The approach we presented so far can be performed in five phases:

1. Perform reachability analyses for all subsystems

2. Perform Algorithm 3 (p. 139) reachability Cross-Checking

160 6.8 Restriction to connected Subsystems

Figure 6.7: The interaction graph for Tanenbaum’s Dining Philosophers

3. Check RefSmall on all substates q′ ∈
⋃

K ′⊆K,|K ′|=d Reach′(SysK ′)

4. Perform Algorithm 5 (p. 158) uncriticalness Cross-Checking

5. Check RefLarge on all Substates q′ ∈
⋃

K ′⊆K,|K ′|=d Reach′′(SysK ′)

We modify these five phases now by restricting all considerations to connected

subsystems, where our restricted phases compute the following data:

1. Perform reachability analyses for all connected subsystems

2. Perform Algorithm 3 (p. 139) reachability Cross-Checking where we

apply the following modifications:

Line 5: for all connected subsystems SysK ′ . . .

Line 13: for all connected subsystems SysK ′ . . .

3. Check RefSmall on all substates q′ ∈
⋃

connected K ′⊆K,|K ′|=d Reach′(SysK ′)

4. Perform Algorithm 5 (p. 158) uncriticalness Cross-Checking where we

apply the following modifications:

Line 5: for all connected subsystems SysK ′ . . .

Line 13: for all connected subsystems SysK ′ . . .

5. Check RefLarge on all substates q′ ∈
⋃

connected K ′⊆K,|K ′|=d Reach′′(SysK ′)

6.8 Restriction to connected Subsystems 161

Given a system Sys our general approach (i.e., without restriction to con-

nected subsystems, GA in short) is able to verify it deadlock-free iff neither

of the steps 3 and 5 detects a violation of our local indicator predicates. We

write GA(Sys) = true if this is the case and GA(Sys) = false otherwise.

Analogously, we define the same notion for the restricted approach (RA in

short) and refer to it by RA(Sys). We want to show that the restriction to

connected subsystems as described above causes neither a loss of correctness

nor of information. We formulate this proposition in Theorem 6.2 and prove

it via Lemmas 6.10 and 6.11.

Theorem 6.2

The restriction to connected subsystems as described above causes neither a

loss of correctness nor of information.

Proof:

The proof of Theorem 6.2 is given by Lemmas 6.10 and 6.11.

Lemma 6.10

RA(Sys) ⇒ Sys is deadlock-free

Proof:

The restriction to connected subsystems in steps 1, 3 and 5 compared to the

one in steps 2 and 4 is of a different quality: Considering less subsystems

in steps 1,3 and 5 means (at least syntactically) weakening the condition for

deadlock-freedom while considering less subsystems in steps 2 and 4 means

(at least syntactically) invigorating the condition because we abstain from

decreasing the number of substates on which we check our local indicator

predicates.

So basically to prove that correctness is preserved, we have to prove that

162 6.8 Restriction to connected Subsystems

the predicates RefSmall and RefLarge imply deadlock-freedom of a system,

even if we check them on restricted subsystems only. For this purpose, we

apply the following Propositions 6.3 and 6.4 to turn the implications given

in Lemmas 6.6 (p. 145) and 6.9 (p. 150) into our desired stronger results.

Proposition 6.3

∀K ′ ⊆ K, |K ′| = d, K ′ connected RefSmall(q ↓ K ′) ⇒

∀K ′ ⊆ K, |K ′| = d RefSmall(q ↓ K ′)

Proof:

Assume that there exists a global state q and an unconnected K ′ ⊆ K

with ¬RefSmall(q ↓ K ′). Then, there must be a connected subset K̃ ⊆ K ′

that includes a small deadlock12. Successively extending K̃ to size d (such

components must exist because Sys is connected) yields a connected set K̂

with ¬RefSmall(q ↓ K̂).

Proposition 6.4

∀K ′ ⊆ K, |K ′| = d, K ′ connected RefLarge(q ↓ K ′) ⇒

∀K ′ ⊆ K, |K ′| = d RefLarge(q ↓ K ′)

Proof:

We defined Ref Large as the negation of the predicate MinLarge. So for any

K ′ for which RefLarge(q ↓ K ′) does not hold MinLarge(q ↓ K ′) does hold.

However, MinLarge(q ↓ K ′) implies the existence of a sequence of waiting

relations that form an order. This implies that any K ′ with ¬RefLarge(q ↓ K ′)

has to be connected.

12There is a minimal deadlock D ⊆ K ′ and a minimal deadlock cannot contain compo-

nents that do not (not even over third party components) communicate.

6.8 Restriction to connected Subsystems 163

Lemma 6.11

GA(Sys) ⇒ RA(Sys)

Proof:

We want to prove that the restriction to connected subsystems does not affect

the chances of our approach to prove a system deadlock-free. It is obvious

that checking less substates for small, respectively large deadlocks (by check-

ing the respective predicates) cannot lead to a situation where the restriction

to connected subsystems affects our chances for success in a negative way.

There are however two aspects of the restriction to connected subsystems

that could – at first glance – very well have a negative impact on our results:

A) Firstly, when marking substates unreachable in the reachability Cross-

Checking algorithm, we take less substates into account to refute the

reachability of others.

B) Secondly, when marking substates uncritical in the uncriticalness Cross-

Checking algorithm, we take less substates into account to mark others

uncritical.

We will show that in neither of the two cases, the restriction to connected

subsystems affects the number of states whose reachability resp. criticalness

is refuted. This is formalized in the following Lemmas 6.12 (concerning A)

and 6.13 (concerning B).

Definition 6.30

In the Algorithms 3 and 5, the reachability, respectively the criticalness of

states is refuted in Lines 13 to Lines 17.

This happens iff a state q′′ (defined in Line 3) has been processed in a sub-

system SysK ′ (defined in Line 5) in such a way that all extensions of q′ in

K ′ were unreachable, respectively allowed for a participation in an original

164 6.8 Restriction to connected Subsystems

interaction. In this case, we call q′′ a witness in K ′.

Definition 6.31

Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) be a connected interaction system and

K ′ ⊆ K. K ′ induces a subgraph GInt(K
′) of the interaction graph GInt of

Sys where GInt(K
′) is not necessarily connected. We define the connected

decomposition of K ′ by CD(K ′) = {K ′
1, . . . , K

′
k}, with

•]1≤l≤kK
′
l = K ′

• i and j belong to the same K ′
l iff i is reachable from j in GInt(K

′).

Proposition 6.5

Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) be a connected interaction system and

K ′ ⊆ K such that SysK ′ is unconnected. Then (due to the fact that the

connected parts of K ′ act totally independently from each other) the reachable

state space of SysK ′ equals the Cartesian product of the reachable state spaces

of the subsystems induced by the connected parts of K ′:

Reach(SysK ′) =
∏

K ′′∈CD(K ′) Reach(SysK ′′).

Definition 6.32

Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K) be a connected interaction system and

K ′ ⊆ K such that SysK ′ is unconnected with CD(K ′) = {K ′
1, . . . , K

′
k}.

Further, let q′ ∈ Subs(K ′). Then we denote by covering of q′ in K ′ the set

Cov(q′, K ′) =
⋃

K ′

i∈CD(K ′) with K ′

i∩K(q′)6=∅ K ′
i.

Lemma 6.12

Let K ′ ⊆ K and q′ ∈ Subs(K ′). If q′ is a witness in K ′, i.e., the extensions

of q′ are unreachable in K ′ and SysK ′ is unconnected, then there exists a

connected subsystem K ′′ in which q′ (or a substate q′′ of q′) is also a witness.

More formally put:

6.8 Restriction to connected Subsystems 165

∃K ′ ⊆ K, |K ′| = d, K ′ unconnected ∃q′ ∈ Subs(K ′) :

Ext(q′, K ′) ∩ Reach(SysK ′) = ∅

⇒ ∃K ′′ ⊆ K, |K ′′| = d, K ′′ connected ∃q′′ ∈ Subs(K(q′)) :

Ext(q′′, K ′′) ∩ Reach(SysK ′′) = ∅

Proof:

Firstly, we prove that the reason why no extension of q′ is reachable in SysK ′

lies in those components of K ′ that are connected with K(q′).

More formally: ∀q̂′ ∈ Ext(q′, Cov(q′, K ′)) q̂′ /∈ Reach(SysCov(q′,K ′)).

We know that Ext(q′, K ′) ∩ Reach(SysK ′) = ∅. On the other hand, we can

apply the extension operator succesively, i.e., Ext(q′, K ′) = Ext(Ext(q′ ↓

Cov(q′, K ′)), K ′\Cov(q′, K ′)) and by Proposition 6.5 we know Reach(SysK ′)

= Reach(SysCov(q′,K ′)) × Reach(SysK ′\Cov(q′,K ′)).

Substituting these expressions yields:

Ext(Ext(q′ ↓ Cov(q′, K ′)), K ′ \ Cov(q′, K ′))

∩ Reach(SysCov(q′,K ′)) × Reach(SysK ′\Cov(q′,K ′))

= ∅

As the global starting state q0 of Sys is reachable in the global system,

we know that its projection is reachable in every subsystem, in particular

q0 ↓ (K ′ \ Cov(q′, K ′)) ∈ Reach(SysK ′\Cov(q′,K ′)).

However, assuming the existence of a q̂′ ∈ Ext(q′, Cov(q′, K ′)) that is reach-

able in SysCov(q′,K ′) yields that both sets of which we build the intersection

here would contain the composition of q̂′ with q0 ↓ (K ′ \ Cov(q′, K ′)). This

yields a contradiction to their intersection being empty.

So we conclude ∀q̂′ ∈ Ext(q′, Cov(q′, K ′)) q̂′ /∈ Reach(SysCov(q′,K ′)).

If Cov(q′, K ′) is connected then we may simply extend this set of compo-

nents to a connected set K ′′ of size d and with q′′ = q′, we surely have

Ext(q′′, K ′′) ∩ Reach(SysK ′′) = ∅. If however Cov(q′, K ′) is unconnected

166 6.8 Restriction to connected Subsystems

then let CD(Cov(q′, K ′)) = {K ′
1, . . . , K

′
k}.

Assume that ∀1 ≤ i ≤ k ∃q̂i
′ ∈ Ext(q′ ↓ K ′

i, K
′
i) with q̂i

′ ∈ Reach(SysK ′

i
).

If this was the case we could compose these (disjoint) extensions to a state q̂i

and invoke Proposition 6.5 to conclude that q̂i ∈ Reach(SysCov(q′,K ′)) which

is a contradiction because this q̂i would be an extension of q′ in Cov(q′, K ′).

Thus, we have proven that ∃i ∈ {1, . . . , k} ∀q̂′ ∈ Ext(q ↓ K ′
i, K

′
i) q̂′ /∈

Reach(SysK ′

i
). Finally, we define q′′ = q′ ↓ K ′

i and extend K ′
i to a connected

set K ′′ of size d and we surely have Ext(q′′, K ′′) ∩ Reach(SysK ′′) = ∅.

Lemma 6.13

Let K ′ ⊆ K and q′ ∈ Subs(K ′). If q′ is a witness in K ′, i.e., the extensions of

q′ can all participate in original interactions in K ′, and SysK ′ is unconnected,

then there exists a connected subsystem K ′′ in which q′ (or a substate q′′ of

q′) is also a witness.

More formally put:

∃K ′ ⊆ K, |K ′| = d, K ′ unconnected ∃q′ ∈ Subs(K ′) :

∀q̂′ ∈ Ext(q′, K ′) part pos(SysK ′[q̂′], K(q′))

⇒ ∃K ′′ ⊆ K, |K ′′| = d, K ′′ connected ∃q′′ ∈ Subs(K(q′)) :

∀q̂′′ ∈ Ext(q′′, K ′′) part pos(SysK ′′[q̂′′], K(q′))

Proof:

Firstly, we prove that the reason why an original interaction in which q′ par-

ticipates is always possible in K ′ lies in those components of K ′ that are

connected with q′.

More formally put:

∀q̂′ ∈ Ext(q′, Cov(q′, K ′)) part pos(SysCov(q′,K ′)[q̂
′], K(q′)).

Assume the existence of a state q̂′ ∈ Ext(q′, Cov(q′, K ′)) for which

¬part pos(SysCov(q′,K ′)[q̂
′], K(q′)).

Then q̂′ ∈ Reach(SysCov(q′,K ′)) must hold, but q̂′ does not allow for an original

6.8 Restriction to connected Subsystems 167

interaction. As a consequence, the composition of q̂ with q0 ↓ K ′\Cov(q′, K ′)

would be reachable in SysK ′ and would obviously not allow for an original

interaction in which q′ participates. Such a state would however contradict

our assumptions.

If Cov(q′, K ′) is connected then we may simply extend this set of compo-

nents to a connected set K ′′ of size d and with q′′ = q′, we may conclude (as

additionally observed components cannot interfere with the executability of

original interactions) ∀q̂′ ∈ Ext(q′′, K ′′) part pos(SysK ′′[q̂′], K(q′)). If how-

ever, Cov(q′, K ′) is unconnected then let CD(Cov(q′, K ′)) = {K ′
1, . . . , K

′
k}.

Assume that for each 1 ≤ i ≤ k ∃q̂′ ∈ Ext(q′, K ′
i) s.t. q̂′ ∈ Reach(SysK ′

i
) ∧

q̂′ 6→Int.

Then their composition would also be reachable in SysCov(q′,K ′) and it would

not allow for an original interaction in which q′ participates in contradiction

to ∀q̂′ ∈ Ext(q′, Cov(q′, K ′)) part pos(SysCov(q′,K ′)[q̂
′], K(q′)).

Hence, ∃i ∈ {1, . . . , k} ∀ q̂′ ∈ Ext(q′, K ′
i) :

q̂′ ∈ Reach(SysK ′

i
) ⇒ q̂′

α
→Int, respectively

∀ q̂′ ∈ Ext(q′, K ′
i) part pos(SysK ′

i
[q̂′], K(q′)).

Finally, we define q′′ = q′ ↓ K ′
i and extend K ′

i to a connected set K ′′ of

size d and (as additionally observed components do not interfere with the

executability of original interactions) may conclude:

∀ q̂′′ ∈ Ext(q′′, K ′′) part pos(SysK ′′[q̂′′], K(q′′)).

Remark 6.18

The restriction to connected subsystems will result in a major speed-up for

our approach for systems with “regional connectivity” or in other words, for

systems where the interaction graph GInt = (V, E) is sparse, i.e., |E| � |V |2.

Example 6.16

For Tanenbaum’s dining philosophers as modeled here, the maximum degree

168 6.8 Restriction to connected Subsystems

of a node in the interaction graph is 9 (independently of p, cf. Figure 6.7,

p. 160). So an arbitrary K ′ ⊆ K such that SysK ′ is connected can be selected

as follows: Firstly, select an arbitrary component (one out of n). Secondly,

select a neighbor (up to 9 choices) of some already selected component (up

to d − 1 choices). Repeat the second step d − 1 times. This consideration

allows us to derive that the maximum number of connected subsystems is

bounded by n · (9(d − 1))d−1 = O(n) for a fixed choice of d.

Chapter 7

Conclusion & Related Work

7.1 Formal Verification

Since the first emergence of attempts to not only check systems for errors,

but to rather formally prove desired properties of a system, one may identify

five central approaches that try to achieve this goal in different ways:

i) Deductive Program Verification

ii) Abstract Interpretation

iii) Sufficient Conditions

iv) Model-Checking

v) Equivalences

i) Deductive program verification goes back to [Flo67] and [Hoa69] and com-

bines program code and logic to formally verify programs. These first ele-

mentary approaches have been extended by higher programming constructs

like arrays or procedure calls [GL80], parallelism [GL81, Owi75] and abstract

data types [Owi79]. Prominent examples for tools for deductive verification

are, e.g., StEp [MBB+95] and TLV [SP96]. Apart from these, also classic

theorem provers like Isabelle [NPW02], PVS [OS08], ACL2 [KMM00] and

169

170 7.1 Formal Verification

Coq [PM93] can be applied for the purpose of verification. Furthermore, de-

ductive methods allow to deduce (by a logic) properties of a system based on

a specification of a system. As the application of deduction can be a lengthy

process, one will in many cases not verify the final program code but rather

the underlying algorithm or a simplified abstraction of the program.

A focus on component-based systems in the sense of this work is rarely found

in the area of deductive program verification. An approach that deals in

this context with the model of interaction systems is D-Finder [BBNS09],

whose theoretical background was presented in [BBSN08]. D-Finder exploits

compositionality of interaction systems and builds on so-called interaction-

invariants that characterize the coordination between components to itera-

tively prove more and more strict invariance-properties. After each iteration,

it checks whether a desired property (which is also formulated as an invari-

ant) can be derived. In [BBNS09], deadlock is treated as a possible property.

The depth of the iteration is a parameter and bears analogy to the parameter

in our approach. In both cases raising the value of the parameter allows for

a more precise analysis. Furthermore, the approach of D-Finder suggests to

interpret the check that is applied in every iteration as a sufficient condition.

ii) Abstract interpretation comprises all approaches that abstract from cer-

tain aspects of a system (respectively program) to ease the proof of properties.

A classic example is the abstraction from data values by intervals. If, given

a reactive system S, the (Kripke-)structure K(S), on which the system S

is usually mapped, is too large an abstraction is created. This is not done

by first mapping to K(S) and then abstracting from it, but by applying a

different (more abstract) semantics to the system directly. The aim of these

approaches is a reduction of the state space by identifying sets of states based

7.1 Formal Verification 171

on the program. The formalization of this idea goes back to [CC77]. The

concrete (original) respectively the abstract (smaller) state space are both

described by a partial order (C,v) respectively (A,�). Between these partial

orders a relation is established by an abstraction function α : C → A and

a concretization function γ : A → C. Usually, one demands that this pair

of mappings builds a Galois-connection [CC77, CC92, San77] from (C,v) to

(A,�). Weaker conditions than a Galois-connection have also been defined,

where the abstraction- respectively concretization function are replaced by

appropriate relations [BBLS93, CGL92, CGL94, LGS+95].

An important requirement concerning these relations is that they have to

make sure, that the validity of a proof of a property in the abstract system

is maintained when going to the concrete system. Once a system property

is proved on the abstract system, it thus also holds for the concrete one.

If the property can not be proven correct in the abstract system, one can

try to achieve this aim by refinement. This framework yields a trade-off, as

an abstraction function has to be fine enough to allow for the proof of the

desired property on the one hand but coarse enough to allow for checking in

the time available.

Abstract interpretation has been applied (mainly in the context of embedded

systems) with great success. Finding an abstraction that is appropriate for

proving a property is a non-trivial step and requires a good understanding of

the “domain of application”. Like deductive program verification, this area

hitherto lacks a special focus on component-based systems.

iii) Sufficient conditions comprise a variety of approaches. We subsume un-

der this term different techniques that try to establish properties of sys-

tems under certain preconditions. These preconditions may occur in form of

172 7.1 Formal Verification

structural restrictions like, e.g., the class of component-based systems with

tree-like communication structure which is among others given for (nets of)

master-client systems. The question of deadlock-freedom for systems with

a tree-like communication structure has been investigated for different mod-

els of computation [BR91, MM08a, MM09, Lam09, AB03]. Brookes and

Roscoe showed [BR91] that it is sufficient for unidirectional tree-like systems

to prove deadlock-freedom for subsystems consisting of two neighbor compo-

nents. If this is done for all pairs of neighbor components one may conclude

deadlock-freedom for the complete system. Sufficient conditions have in com-

mon that they concentrate on subclasses of systems and that they usually

allow for larger input parameters (i.e., mainly larger systems) at the expense

of the variety of treatable systems. They have been developed independently

across all models of computation. Some sufficient conditions (like the Cross-

Checking approach presented in this work) that treat deadlock-freedom are,

e.g., [BCD02] which uses weak bisimulation on an abstract description lan-

guage whose semantics is related to the process algebras CSP and CCS, or

[IU01] which is based directly on CCS and exploits a partial equivalence re-

lation. Further examples for sufficient conditions are [BR91, AG97, AC05].

Our Cross-Checking approach belongs to the class of sufficient conditions.

iv) Since its appearance in the 80s, when Emerson and Clarke [EC82] and

independently of them Queille and Sifakis [QS82] presented a new approach

for the verification of computer systems, model-checking makes a standalone

area of computer science. Specifically adapted model-checking is also applied

to component-based systems [Arb04]. Model-checking checks for a system,

which is usually given by an automaton M , a property represented by a

temporal-logic formula, e.g., an LTL-formula φ. For this purpose, the nega-

7.1 Formal Verification 173

tion of φ is translated into an automaton B and the automaton M ∩ B for

the intersection is established. If in this automaton no final state is reach-

able from the starting state, then the system satisfies φ. The automaton

construction also suffers from state space explosion, i.e., if the system con-

sists of k parallel processes (or components) the state space of M may be

exponentially large in k.

Model-checking can be divided into four subcategories, according to the na-

ture of the different approaches that try to avoid state space explosion: Sym-

bolic model-checking, Bounded model-checking, Half-order reduction and Ab-

straction.

v) In Chapter 2 we defined various equivalences that describe similarities

between concurrent systems (respectively their corresponding behaviors). A

straightforward idea is to compute a simulation for a given pair of systems.

Examples of how such approaches can be implemented are the algorithm of

Kanellakis and Smolka [KS90] for which an improved parallel implementa-

tion was published in [JKKO98], or the bisimulation quotient computation

by Paige and Tarjan [PT87]. A discussion of approaches and results of equiv-

alence computation was presented by Cleaveland and Sokolsky [RO01]. As

we already pointed out in the introduction of this theses, equivalencs are the

most original and general way to formalize the similarity of systems or of

a system implementation and its specification. As a consequence, one can

say that equivalence computation is the most straightforward way to reason

about verficiation, which means that this approach is most vulnerable to

state space explosion which manifests itself – for interaction systems – in the

PSPACE-hardness results that we presented in Section 6.

174 7.2 Related Work

7.2 Related Work

Depending on the model, the system, the desired property, and other as-

pects one can name advantages and disadvantages for each of the various

approaches, and there exist various benchmarks that favor one or the other

technique like Moshi Vardi pointed out in his talk on the Reachability Prob-

lems Conference [Var09] in 2009. This fact makes a general quantitative com-

parison impossible and the last conclusion of wisdom seems to be a distant

prospect and motivates new approaches to prove properties for concurrent

systems, especially in a component-based scenario.

Comparing the approach presented in this work to other ideas, it can be said

that in symbolic model-checking there exist a couple of approaches which –

similarly to Cross-Checking – try to avoid state space explosion by decom-

posing a system to subsystems.

Cho et al. [CHM+] gave different algorithms for the (forwards-)reachability

analysis of the state space that yields an over-approximation. The basic

idea they use is to decompose the state variables in pairwise disjoint subsets

and then perform reachability analyses on these subsets. The corresponding

subsets of states can then be viewed as “subautomata”. The original problem

is thus reduced to the ordinary reachability analysis on smaller automata.

Cho et al. treated different variants of the approximation of the transition

relation for (forwards-)reachability: MBM (machine by machine) and FBF

(frame by frame). The main difference between these approaches is the way in

which they model the communication between the respective subautomata.

FBF allows communication between the subautomata in every time frame of

an lfp-routine (i.e., reachability analysis). MBM on the other hand allows

communication only after the reachability analyses have been completed.

Furthermore, two variants of the FBF-approach have been proposed, RFBF

7.2 Related Work 175

(reached frame by frame) and TFBF (to frame by frame), which differ with

respect to the constraint sets that are imposed on the subautomata during

the reachability analyses.

In [CHM+96] Cho et al. presented heuristics to compute favorable parti-

tions for the set of state variables. One possibility is to exploit potentially

accessible knowledge about subsystems from which the original system was

composed. These subsystems could be viewed as components in our setting.

Moon et al. [MJH+98] applied algorithms for the approximative computa-

tion of the reachable state space to support model-checking. Cabodi et

al. [CCQ94] combined approximative forwards-reachability with exact back-

wards-reachability. Lee et al. [LPJ+96] proposed so-called “tearing”-schemata

for approximative backwards-analysis and extended it to the idea of “vari-

able tearing” and “blockwise tearing” to approximate the successor function

of a system and then refine it in a stepwise manner until a given ACTL or

ECTL [McM92] formula can be proved or refuted. They also partitioned the

set of state variables into pairwise disjoint subsets, formed blockwise subre-

lations for the various subsets, and finally connected them until the resulting

successor function was exact enough to prove or disprove a property.

The basic idea of the investigation of subsystems in symbolic model-checking

is that their representation as BDDs is more compact. From these BDDs

an approximation of the original systems is then obtained by conjunction

and this over-approximation is then used to check conditions that imply

properties of the original system. For this purpose, an over-approximation

of the global state space is computed by iteratively abstracting, concretizing

and applying the global successor function. The computation of the global

successor function is an important technical aspect and an efficient approach

for this step is presented, e.g., in [GDHH98].

176 7.2 Related Work

In contrast to the approaches [RS95] and [RMSS98], we are (like [Gov00])

interested in the computation of an over-approximation. In contrast to the

approaches in [CCQ94, CHM+, CHM+96, LPJ+96, MJH+98], we allow (like

[Gov00]) overlapping projections and even push the idea further by investi-

gating all (relevant) overlapping projections of a fixed size d.

To the best of our knowledge, the work presented in [GDHH98, GD98,

GDB99, Gov00] is the one closest related to our Cross-Checking approach.

In both cases non-disjoint subsystems (i.e., overlapping projections) are es-

tablished, whose state space is bounded by a polynomial of degree d, where d

is the maximum (and as far as Cross-Checking is concerned: the exact) num-

ber of components in a subsystem. In both cases, this yields an additional

degree of freedom in subsystems, namely the non-observed components.

The first major difference of the Cross-Checking approach is that we do not

try to compute the global transition relation. Instead, we compute at first

the (smaller) transition systems of the subsystems and accept the imprecision

due to the additional degrees of freedom. Only after having computed the

reachable state spaces of the subsystems do we enhance the quality of our

approximation by Cross-Checking.

The second major difference is that we do not (in contrast to all approaches

mentioned above) try to compute a representation of the global state space

(neither explicitly nor through BDDs), to prove a desired property on this

representation. Instead, we apply a sufficient condition that – if valid on

all reachable states of the subsystems – implies the desired property for the

reachable global state space.

An additional distinguishing feature of our approach is the fact that it is fully

automated, including the determination of the relevant subsystems, whereas

the basic principle of partitioning the set of state variables into projections,

7.3 Concluding Remarks 177

e.g., in [GDHH98, GD98, GDB99, Gov00], relies on the user.

Approaches that are methodically further away from our Cross-Checking

approach, but nevertheless should be mentioned here because they deal with

the model of interaction systems which we use to present our ideas, can be

found in [GS03, Sif05, GGM+07b, GGM+07a, BBS06, GQ07].

7.3 Concluding Remarks

We presented a method to obtain an enhanced over-approximation of the

reachable global state space of a component-based system with n compo-

nents in polynomial time. The method consists of choosing a parameter

d, investigating subsystems consisting of d components in a first step (in

O(nd · md)) and then improving this approximation by Cross-Checking (in

O(d ·nd ·md)). The computation of the first step can be improved in various

respects. Firstly, for the purpose of proving deadlock-freedom we do not have

to consider all
(

n

d

)
subsystems but only the ones that are connected. Secondly,

the computation of the various sets Reach(SysK ′) can be performed in paral-

lel. Moreover, we may combine these techniques with other methods as, e.g.,

using BDDs for the computation of the Reach(SysK ′). Our approximation

can be used to investigate global properties by considering subsystems and

checking conditions on them which requires only polynomial time costs. We

showed how this can be achieved for the property of local deadlock-freedom.

The presented techniques have been implemented in our tool “PrInSESSA”

[MS08] where in addition we also apply a variant of Cross-Checking for the

detection of minimal large deadlocks. This allows us for our example DP (6)

with n = 18 and d = 4 to reduce the number of critical states to 24 (which

accounts to 2 critical states up to symmetry). Also, for n = 18 and d = 5 our

178 7.3 Concluding Remarks

sufficient condition for deadlock-freedom is valid (i.e., there are no critical

states at all) and we conjecture (based on the regular structure of the exam-

ple’s interaction graph) that d = 5 is sufficient to prove DP (p) deadlock-free,

independently of p.

Due to the fact that our tool PrInSESSA is still in a prototype state, empiri-

cal comparison with other approaches to prove properties by reachable state

space approximation is not yet feasible. The empiric results provided in this

thesis are rather meant to point out the potential of our approach.

Finally, we end this conclusion by enlisting and discussing the major features,

respectively selling points of our approach.

• Run-time is always bounded by a polynomial with degree d .

The parameter d for the subsystem size also serves as a setscrew to

adjust accuracy vs. runtime. This is a concept that occurs similarly,

e.g., in bounded model-checking, where the longer paths increase the

time bounds of the algorithm as well as its chance of success. This

makes the approach adjustable to any setting depending on the system

size and the available time and computation power.

• No restriction of system communication structure. We do not

yet exploit any system structure (e.g., symmetry). The choice of the

symmetric examples used in this work might well divert the reader

from the fact that we do not exploit (or in other words: do not rely on)

symmetry. The symmetry that occurs in our examples simply serves

the purpose of easy scalability. Our approach does work well with

non-symmetric examples. Furthermore, symmetry could be exploited

in future versions where it might be sufficient to investigate only one

representative of an equivalence class of subsystems (and some of its

neighbors to allow for Cross-Checking).

7.3 Concluding Remarks 179

• Applicability to other models. We chose the model of interaction

systems as a means of demonstration. However, the approach can easily

be conferred upon other models, especially such models that feature

multi-party synchronizations.

• Combination with other approaches. Hybrid approaches that try

to unite the advantages of multiple techniques are very common in the

setting of formal methods. Especially the Cross-Checking technique

seems suited to be outsourced to enhance the approximation quality of

other approaches.

Also, if our approach is performed and is not able to prove a sys-

tem to be deadlock-free on its own it will output critical states. It

is self-evident that a combination with other approaches to refute the

criticalness of the remaining states is promising. Finally, the BDD-

representation of symbolic model-checking that is used to save both

space and running time can be also applied in our setting and is cur-

rently used for a more sophisticated implementation.

• Implementations are promising. Our first prototype implementa-

tion PrInSESSA [MS08] already proved the potential of our approach.

It showed the general possibility to prove large systems deadlock-free

within a polynomial time bound and provided all empirical data that is

used in this work. A recent, more sophisticated implementation based

on BDDs allows us to handle 500 philosophers in ∼10min.

• Easy distributability. When reasoning about concurrent systems, it

is an obvious idea to perform any kind of formal analysis in a distributed

manner. In our case there are two steps that can be identified in this

context: Firstly, we analyze
(

n

d

)
subsystems for reachability. Secondly,

we perform the Cross-Checking algorithm to compare them among each

180 7.3 Concluding Remarks

other. Both steps can easily be performed in parallel: Given k process-

ing units u1, . . . , uk we could decompose the set of subsystems into k

subsets S1, . . . , Sk, such that ui performs the reachability analyses for

Si. As to Cross-Checking, we could at first glance use d− 1 processing

units u1, . . . , ud−1, where ui investigates substates of size i + 1. Addi-

tionally, if more than d − 1 processing units are available, one could

further split up the substates of a common size, e.g., based on their

lexicographic order.

• White-box representation of components not necessary. One

aspect under which the different approaches described in Section 7.1 can

well be compared is the degree of information that is needed to apply

them. While abstraction usually requires a white-box representation

of the system, half-order reduction on the other hand only requires

(apart from the information which actions are independent from each

other) a possibility to generate the global transition system in a step-

wise manner (e.g., by requests to gray boxes). The same holds for our

Cross-Checking technique. Additionally, we do not need information

about interdependency of actions.

• Potential for further development. We presented a sufficient con-

dition for deadlock-freedom of interaction systems. Generalizing our

ideas, we suggested a framework where system properties that are

defined by predicates on the reachable global state space are instead

proved on subsystems. In such a framework, the ideas presented in this

work can only be a starting point. Both, the approximation quality and

the sufficient conditions seem to bear potential for improvement. Espe-

cially our local indicator predicates are still very strict: Blocking chains

are only one possible characteristic of a deadlock and it seems worth-

7.3 Concluding Remarks 181

while to try and build other abstractions from the participation graph

to deduce necessary conditions for the existence of a large deadlock.

Such additional characteristics could simply be checked additionally

(cf. Remark 6.17) before we mark a state critical.

Finally, the presented framework is suited to modularly integrate other

predicates, e.g., for liveness, availability, and other important proper-

ties of component-based systems.

Bibliography

[AB03] Alessandro Aldini and Marco Bernardo. A General Approach

to Deadlock Freedom Verification for Software Architectures. In

Proceedings of FME’03, LNCS 2805, pages 658–677, 2003.

[AC05] Paul Attie and Hana Chockler. Efficiently Verifiable Conditions

for Deadlock-Freedom of Large Concurrent Programs. In Pro-

ceedings of VMCAI’05, LNCS 3385, pages 465–481, 2005.

[AG97] Robert Allen and David Garlan. A Formal Basis for Architec-

tural Connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–

249, 1997.

[AH01] Luca de Alfaro and Tom Henzinger. Interface Automata. In

Proceedings of ESEC/SIGSOFT FSE’01, pages 109–120, 2001.

[Arb98] Farhad Arbab. What Do You Mean, Coordination? In Bul-

letin of the Dutch Association for Theoretical Computer Science

(NVTI), pages 11–22, 1998.

[Arb04] Farhad Arbab. Reo: a Channel-Based Coordination Model for

Component Composition. Mathematical Structures in Com-

puter Science, 14(3):329–366, 2004.

182

BIBLIOGRAPHY 183

[Arn94] André Arnold. Finite Transition Systems: Semantics of Com-

municating Systems. Prentice Hall International (UK) Ltd.,

Hertfordshire, UK, 1994. Translator-John Plaice.

[BBLS93] Saddek Bensalem, Ahmed Bouajjani, Claire Loiseaux, and

Joseph Sifakis. Property Preserving Simulations. In CAV ’92:

Proceedings of the Fourth International Workshop on Computer

Aided Verification, pages 260–273, London, UK, 1993. Springer-

Verlag.

[BBNS09] Saddek Bensalem, Marius Bozga, Thanh-Hung Nguyen, and

Joseph Sifakis. D-Finder: A Tool for Compositional Deadlock

Detection and Verification. In CAV ’09: Proceedings of the

21st International Conference on Computer Aided Verification,

pages 614–619, Berlin, Heidelberg, 2009. Springer-Verlag.

[BBS06] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modeling

Heterogeneous Real-time Components in BIP. In Proceedings

of SEFM’06, pages 3–12. IEEE Computer Society, 2006.

[BBSN08] Saddek Bensalem, Marius Bozga, Joseph Sifakis, and Thanh-

Hung Nguyen. Compositional Verification for Component-

Based Systems and Application. In ATVA ’08: Proceedings

of the 6th International Symposium on Automated Technology

for Verification and Analysis, pages 64–79, Berlin, Heidelberg,

2008. Springer-Verlag.

[BCD02] Marco Bernardo, Paolo Ciancarini, and Lorenzo Donatiello. Ar-

chitecting Families of Software Systems with Process Algebras.

184 BIBLIOGRAPHY

ACM Trans. on Software Engineering and Methodology, 11:386–

426, 2002.

[BGLZ05a] Mario Bravetti, Roberto Gorrieri, Roberto Lucchi, and Gian-

luigi Zavattaro. On the Expressiveness of Probabilistic and Pri-

oritized Data-retrieval in Linda. Electr. Notes Theor. Comput.

Sci., 128(5):39–53, 2005.

[BGLZ05b] Mario Bravetti, Roberto Gorrieri, Roberto Lucchi, and Gian-

luigi Zavattaro. Quantitative Information in the Tuple Space

Coordination Model. Theor. Comput. Sci., 346(1):28–57, 2005.

[BGM00] Frank S. de Boer, Maurizio Gabbrielli, and Maria Chiara Meo.

A Timed Linda Language. In COORDINATION ’00: Proceed-

ings of the 4th International Conference on Coordination Lan-

guages and Models, pages 299–304, London, UK, 2000. Springer-

Verlag.

[BGZ00] Nadia Busi, Roberto Gorrieri, and Gianluigi Zavattaro. On the

Expressiveness of Linda Coordination Primitives. Inf. Comput.,

156(1-2):90–121, 2000.

[BR91] S. Brookes and A. Roscoe. Deadlock Analysis in Networks of

Communicating Processes. Distributed Computing, 4(4):209–

230, 1991.

[CC77] Patrick Cousot and Radhia Cousot. Abstract Interpretation:

A Unified Lattice Model for Static Analysis of Programs by

Construction or Approximation of Fixpoints. In POPL ’77:

Proceedings of the 4th ACM SIGACT-SIGPLAN symposium on

BIBLIOGRAPHY 185

Principles of programming languages, pages 238–252, New York,

NY, USA, 1977. ACM.

[CC92] Patrick Cousot and Rahida Cousot. Abstract Interpretation and

Application to Logic Programs. J. Log. Program., 13(2-3):103–

179, 1992.

[CCK+05] Ran Canetti, Ling Cheung, Dilsun Kaynar, Moses Liskov,

Nancy Lynch, Olivier Pereira, and Roberto Segala. Using Prob-

abilistic I/O Automata to Analyze an Oblivious Transfer Proto-

col. Technical Report MIT-LCS-TR-1001, MIT CSAIL, Cam-

bridge, MA, August 2005.

[CCQ94] Gianpiero Cabodi, P. Camurati, and Stefano Quer. Sym-

bolic Exploration of Large Circuits With Enhanced For-

ward/Backward Traversals. In EURO-DAC ’94: Proceedings

of the conference on European design automation, pages 22–27,

Los Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[CEP93] Allan Cheng, Javier Esparza, and Jens Palsberg. Complexity

Results for 1-safe Nets. In FST TCS’93, LNCS 761, pages 326–

337, 1993.

[CGL92] Edmund M. Clarke, Orna Grumberg, and David E. Long.

Model Checking and Abstraction. Symposium on Principles of

Programming Languages and Systems (POPL), pages 342–354,

1992.

[CGL94] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model

Checking and Abstraction. ACM Trans. Program. Lang. Syst.,

16(5):1512–1542, 1994.

186 BIBLIOGRAPHY

[CHM+] Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Bernard Plessier,

and Fabio Somenzi. Algorithms for Approximate FSM traver-

sal. In DAC ’93: Proceedings of the 30th International Design

Automation Conference.

[CHM93] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisim-

ulation Equivalence is Decidable for Basic Parallel Processes.

In CONCUR ’93: Proceedings of the 4th International Con-

ference on Concurrency Theory, pages 143–157, London, UK,

1993. Springer-Verlag.

[CHM+96] Hyunwoo Cho, Gary D. Hachtel, Enrico Macii, Massimo Pon-

cino, and Fabio Somenzi. Automatic State Space Decomposi-

tion for Approximate FSM Traversal Based on Circuit Analy-

sis. IEEE Trans. on CAD of Integrated Circuits and Systems,

15(12):1451–1464, 1996.

[CJY95] P. Ciancarini, K. K. Jensen, and D. Yankelevich. On the Op-

erational Semantics of a Coordination Language. In P. Cian-

carini, O. Nierstrasz, and A. Yonezawa, editors, Object-Based

Models and Languages for Concurrent Systems: Proc. of the

ECOOP’94 Workshop on Modles and Languages for Coordina-

tion of Parallelism and Distribution, pages 77–106. Springer,

Berlin, Heidelberg, 1995.

[EC82] E. Allen Emerson and Edmund M. Clarke. Using Branching

Time Temporal Logic to Synthesize Synchronization Skeletons.

Science of Computer Programming, 2(3):241–266, December

1982.

BIBLIOGRAPHY 187

[Flo67] R. W. Floyd. Assigning Meaning to Programs. In J. T.

Schwartz, editor, Mathematical Aspects of Computer Science:

Proc. American Mathematics Soc. Symposia, volume 19, pages

19–31, Providence RI, 1967. American Mathematical Society.

[GD98] Shankar G. Govindaraju and David L. Dill. Verification by

Approximate Forward and Backward Reachability. In ICCAD

’98: Proceedings of the 1998 IEEE/ACM International Con-

ference on Computer-Aided Design, pages 366–370, New York,

NY, USA, 1998. ACM.

[GDB99] Shankar G. Govindaraju, David L. Dill, and Jules P. Bergmann.

Improved Approximate Reachability Using Auxiliary State

Variables. In DAC ’99: Proceedings of the 36th Annual

ACM/IEEE Design Automation Conference, pages 312–316,

New York, NY, USA, 1999. ACM.

[GDHH98] Shankar G. Govindaraju, David L. Dill, Alan J. Hu, and

Mark A. Horowitz. Approximate Reachability with BDDs Using

Overlapping Projections. In DAC ’98: Proceedings of the 35th

Annual Design Automation Conference, pages 451–456, New

York, NY, USA, 1998. ACM.

[GGM+07a] Gregor Goessler, Susanne Graf, Mila Majster-Cederbaum,

Moritz Martens, and Joseph Sifakis. An Approach to Modelling

and Verification of Component Based Systems. In Proceedings

of SOFSEM’07, LNCS 4362, 2007.

[GGM+07b] Gregor Goessler, Susanne Graf, Mila Majster-Cederbaum,

Moritz Martens, and Joseph Sifakis. Ensuring Properties of

188 BIBLIOGRAPHY

Interaction Systems by Construction. In Program Analysis and

Compilation, Theory and Practice, LNCS 4444, pages 201–224,

2007.

[GJ79] Michael R. Garey and David S. Johnson. Computers and In-

tractability: A Guide to the Theory of NP-Completeness. W. H.

Freeman & Co., New York, NY, USA, 1979.

[GL80] David Gries and Gary Levin. Assignment and Procedure Call

Proof Rules. ACM Trans. Program. Lang. Syst., 2(4):564–579,

1980.

[GL81] David Gries and Gary Levin. A Proof Technique for Communi-

cating Sequential Processes. Acta Informatica, 15(3):281–302,

1981.

[Gov00] Gaurishankar Govindaraju. Approximate Symbolic Model

Checking Using Overlapping Projections. PhD thesis, Stanford

University, Stanford, CA, USA, 2000. Adviser-Dill, David L.

[GQ07] S. Graf and S. Quinton. Contracts for BIP: Hierarchical Inter-

action Models for Compositional Verification. In Proceedings of

FORTE’07, LNCS 4574, pages 1–18, 2007.

[GS03] Gregor Goessler and Joseph Sifakis. Component-based

Construction of Deadlock-free Systems. In Proceedings of

FSTTCS’03, LNCS 2914, pages 420–433, 2003.

[GS05] Gregor Goessler and Joseph Sifakis. Composition for

Component-based Modeling. Sci. Comput. Program., 55(1-

3):161–183, 2005.

BIBLIOGRAPHY 189

[GW92] Patrice Godefroid and Pierre Wolper. Using partial orders for

the efficient verification of deadlock freedom and safety proper-

ties. In CAV ’91: Proceedings of the 3rd International Workshop

on Computer Aided Verification, pages 332–342, London, UK,

1992. Springer-Verlag.

[Hir94] Yoram Hirshfeld. Petri Nets and the Equivalence Problem. In

CSL ’93: Selected Papers from the 7th Workshop on Computer

Science Logic, pages 165–174, London, UK, 1994. Springer-

Verlag.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Program-

ming. Communications of the ACM, 12(10):576–580, October

1969.

[IU01] Paola Inverardi and Sebastian Uchitel. Proving Deadlock Free-

dom in Component Based Programming. In Proceedings of

ETAPS’01, LNCS 2029, pages 60–75, 2001.

[Jan94] Petr Jancar. Decidability Questions for Bisimilarity of Petri

Nets and Some Related Problems. In Proceedings of STACS94,

Springer-Verlag, LNCS, pages 581–592. Springer-Verlag, 1994.

[JKKO98] Cheoljoo Jeong, Youngchan Kim, Heungnam Kim, and Young-

bae Oh. A faster parallel implementation of the kanellakis-

smolka algorithm for bisimilarity checking. In In Proceedings of

the International Computer Symposium, 1998.

[KBLD08] Jakub Kurzak, Alfredo Buttari, Piotr Luszczek, and Jack Don-

garra. The PlayStation 3 for High-Performance Scientific Com-

puting. Computing in Science and Engg., 10(3):84–87, 2008.

190 BIBLIOGRAPHY

[KLSV06] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits

Vaandrager. The Theory of Timed I/O Automata. Morgan

& Claypool Publishers, 2006.

[KMM00] Matt Kaufmann, Panagiotis Mandios, and J. Strother Moore.

ACL2 essentials. Computer-Aided Reasoning: ACL2 Case Stud-

ies, pages 27–37, 2000.

[KS90] Paris C. Kanellakis and Scott A. Smolka. Ccs expressions fi-

nite state processes, and three problems of equivalence. Inf.

Comput., 86(1):43–68, 1990.

[Lam09] Christian Lambertz. Exploiting Architectural Constraints and

Branching Bisimulation Equivalences in Component-Based Sys-

tems. In Proceedings of FM’09, Doctoral Symposium, 2009.

[LGS+95] Claire Loiseaux, Susanne Graf, Joseph Sifakis, Ahmed Bouaj-

jani, and Saddek Bensalem. Property Preserving Abstractions

for the Verification of Concurrent Systems. In Formal Methods

in System Design, volume 6, pages 11–44, 1995.

[LPJ+96] Woohyuk Lee, Abelardo Pardo, Jae-Young Jang, Gary Hachtel,

and Fabio Somenzi. Tearing Based Automatic Abstraction for

CTL Model Checking. In ICCAD ’96: Proceedings of the 1996

IEEE/ACM International Conference on Computer-Aided De-

sign, pages 76–81, Washington, DC, USA, 1996. IEEE Com-

puter Society.

[MBB+95] Zohar Manna, Nikolaj Bjrner, Anca Browne, Edward Chang,

Michael Coln, Luca Alfaro, Harish Devarajan, Arjun Kapur,

Jaejin Lee, Henny Sipma, and Toms Uribe. STeP: The Stanford

BIBLIOGRAPHY 191

Temporal Prover. In TAPSOFT ’95: Theory and Practice of

Software Development, pages 793–794, Berlin, Heidelberg, 1995.

Springer-Verlag.

[McM92] Kenneth Lauchlin McMillan. Symbolic Model Checking: An

Approach to the State Explosion Problem. PhD thesis, Carnegie

Mellon University, Pittsburgh, PA, USA, 1992.

[Mil89] Robin Milner. Communication and Concurrency. Pren-

tice/Hall, 1989.

[Min67] Marvin L. Minsky. Computation: Finite and Infinite Machines.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[Min07] Christoph Minnameier. Local and Global Deadlock-Detection

in Component Based Systems are NP-hard. Information Pro-

cessing Letters, 103(3):105–111, 2007.

[MJH+98] In-Ho Moon, Jae-Young Jang, Gary D. Hachtel, Fabio Somenzi,

Jun Yuan, and Carl Pixley. Approximate Reachability Don’t

Cares for CTL Model Checking. In ICCAD ’98: Proceedings of

the 1998 IEEE/ACM International Conference on Computer-

Aided Design, pages 351–358, New York, NY, USA, 1998. ACM.

[MM06] Mila E. Majster-Cederbaum and Christoph Minnameier. Ter-

mination and Divergence Are Undecidable Under a Maximum

Progress Multi-step Semantics for LinCa. In Proceedings of IC-

TAC’06, LNCS 4281, pages 65–79, 2006.

[MM08a] Mila Majster-Cederbaum and Moritz Martens. Compositional

Analysis of Deadlock-Freedom for Tree-like Component Archi-

192 BIBLIOGRAPHY

tectures. In EMSOFT ’08: Proceedings of the 8th ACM In-

ternational Conference on Embedded Software, pages 199–206,

New York, NY, USA, 2008. ACM.

[MM08b] Mila Majster-Cederbaum and Christoph Minnameier. Deriving

Complexity Results for Interaction Systems from 1-safe Petri

Nets. In Proceedings of SOFSEM’08, LNCS 4910, pages 352–

363, 2008.

[MM08c] Mila Majster-Cederbaum and Christoph Minnameier. Every-

thing Is PSPACE-Complete in Interaction Systems. In Pro-

ceedings of the 5th International Colloquium on Theoretical As-

pects of Computing, pages 216–227, Berlin, Heidelberg, 2008.

Springer-Verlag.

[MM09] Mila Majster-Cederbaum and Moritz Martens. Using Architec-

tural Constraints for Deadlock-Freedom of Component Systems

with Multiway Cooperation. In TASE ’09: 3rd IEEE Interna-

tional Symposium on Theoretical Aspects of Software Engineer-

ing, 2009.

[MMM06] Mila Majster-Cederbaum, Moritz Martens, and Christoph Min-

nameier. Deciding Liveness in Interaction Systems is NP-hard.

Technical report, University of Mannheim, 2006.

[MMM07a] Mila Majster-Cederbaum, Moritz Martens, and Christoph Min-

nameier. A Polynomial-Time-Checkable Sufficient Condition for

Deadlock-freeness of Component Based Systems. In Proceed-

ings of the 33rd International Conference on Current Trends in

BIBLIOGRAPHY 193

Theory and Practice of Computer Science, SOFSEM07, LNCS

4362, 2007.

[MMM07b] Mila Majster-Cederbaum, Moritz Martens, and Christoph Min-

nameier. Liveness in Interaction Systems. In Proceedings of

FACS’07, ENTCS, 2007.

[Moo65] G. E. Moore. Cramming More Components Onto Integrated

Circuits. Electronics, 38, 1965.

[MS08] Christoph Minnameier and Rouven Schaube. PrInSESSA -

Proving Properties of Interaction Systems by Enhanced State

Space Approximation, 2008.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-

abelle/HOL — A Proof Assistant for Higher-Order Logic, vol-

ume 2283 of LNCS. Springer, 2002.

[OS08] Sam Owre and Natarajan Shankar. A Brief Overview of PVS.

In TPHOLs ’08: Proceedings of the 21st International Confer-

ence on Theorem Proving in Higher Order Logics, pages 22–27,

Berlin, Heidelberg, 2008. Springer-Verlag.

[Owi75] Susan Speer Owicki. Axiomatic Proof Techniques for Parallel

Programs. PhD thesis, Cornell University, Ithaca, NY, USA,

1975.

[Owi79] Susan S. Owicki. Specifications and Proofs for Abstract Data

Types in Concurrent Programs. In Program Construction, In-

ternational Summer School, pages 174–197, London, UK, 1979.

Springer-Verlag.

194 BIBLIOGRAPHY

[PM93] Christine Paulin-Mohring. Inductive Definitions in the System

Coq - Rules and Properties. In TLCA ’93: Proceedings of the

International Conference on Typed Lambda Calculi and Appli-

cations, pages 328–345, London, UK, 1993. Springer-Verlag.

[PT87] Robert Paige and Robert E. Tarjan. Three partition refinement

algorithms. SIAM J. Comput., 16(6):973–989, 1987.

[QS82] Jean-Pierre Queille and Joseph Sifakis. Specification and Verifi-

cation of Concurrent Systems in CESAR. In Proceedings of the

5th Colloquium on International Symposium on Programming,

pages 337–351, London, UK, 1982. Springer-Verlag.

[Reu90] Christophe Reutenauer. The Mathematics of Petri Nets.

Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1990.

[RMSS98] Kavita Ravi, Kenneth L. McMillan, Thomas R. Shiple, and

Fabio Somenzi. Approximation and Decomposition of Binary

Decision Diagrams. In DAC ’98: Proceedings of the 35th Annual

Design Automation Conference, pages 445–450, New York, NY,

USA, 1998. ACM.

[RO01] Cleaveland R. and Sokolsky O. Equivalence and preorder check-

ing for finite-state systems. Handbook of Process Algebra, pages

391–424, 2001.

[RS95] Kavita Ravi and Fabio Somenzi. High-Density Reachability

Analysis. In ICCAD ’95: Proceedings of the 1995 IEEE/ACM

International Conference on Computer-Aided Design, pages

154–158, Washington, DC, USA, 1995. IEEE Computer Society.

BIBLIOGRAPHY 195

[San77] Luis E. Sanchis. Data Types as Lattices: Retractions, Closures

and Projections. ITA, 11(4):329–344, 1977.

[Sav70] Walter Savitch. Relationships between Nondeterministic and

Deterministic Tape Complexities. Journal of Computer and

System Sciences, 4:177–192, 1970.

[Sif05] Joseph Sifakis. A Framework for Component-based Construc-

tion. In Proceedings of the Third IEEE International Conference

on Software Engineering and Formal Methods, pages 293–300.

IEEE Computer Society, 2005.

[SP96] Elad Shahar and Prof Amir Pnueli. The TLV System and its

Applications, 1996.

[SS63] J. C. Shepherdson and H. E. Sturgis. Computability of Recur-

sive Functions. J. ACM, 10(2):217–255, 1963.

[Tan08] Andrew Tanenbaum. Modern Operating Systems. Prentice Hall

International (UK) Ltd., Hertfordshire, UK, UK, 2008. Third

Edition.

[Var09] Moshe Vardi. Model-Checking as a Reachability Problem, In-

vited Talk. In RP ’09: Proceedings of the 3rd International

Workshop on Reachability Problems, page 35, Berlin, Heidel-

berg, 2009. Springer-Verlag.

[YSR09] S. Han Yunghsiang, Omiwade Soji, and Zheng Rong. Surviv-

able Distributed Storage with Progressive Decoding. Technical

report uh-cs-09-09, University of Houston, 2009.

Appendix A

A.1 A simple Example for encMTS

In Figure A.1, we give an example for the transition systems MTS[P] and

MTS-mp[encMTS(P)]. Please note that (violating formal correctness) we let

the tuples c, d, e occur in the labels of the displayed transition systems. These

tuples should actually never occur in labels but it seems convenient to include

them here for ease of understanding. Labels that consist exclusively of such

tuples should actually be replaced by the label τ .

Let P := out(a) | out(b).

Then encMTS(P) = in(c).out(a) | in(c).out(b)

| ! in(d).[rd(e).out(c) | out(d)]

| ! in(d).out(e).wait.in(e).wait.out(d)

| out(d)

The labeled nodes in Figure A.1 correspond to the following states, where the

weak simulation relation S used in the proof of Theorem 3.4 in Section 3.2

would in this case be

S = {(1, 1∗), (1, 1′), (2, 2′), (3, 3′), (4, 4′), (5, 5′), (6, 6′)}).

197

198 A.1 A simple Example for encMTS

1: < out(a) | out(b), ∅ >

1*: < encMTS(out(a) | out(b)), ∅ >

1′: < ẽncMTS(out(a) | out(b)), {d} >

2: < out(b), {a} >

2′: < ẽncMTS(out(b)), {a, d} >

3: < out(a), {b} >

3′: < ẽncMTS(out(a)), {b, d} >

4: < 0, {a, b} >

4′: < ẽncMTS(0), {a, b, d} >

5: < 0, {a, b} >

5′: < ẽncMTS(0), {a, b, d} > (not in the picture for better readability)

6: < 0, {a, b} >

6′: < ẽncMTS(0), {a, b, d} > (not in the picture for better readability)

A.1 A simple Example for encMTS 199

1*

1′

(∅, {d}, ∅)

({d}, ∅, ∅)
({d}, ∅, ∅)

(∅, {e}, ∅)

τ (wait)

({d}, ∅, ∅)

(∅, {e}, ∅)

({d}, ∅, ∅)

(∅, {d}, ∅)

({d}, ∅, ∅)

3′

(∅, ∅, {e})

({e}, {c}, ∅)

2′

(∅, ∅, {(e, 2)})

({e}, {(c, 2)}, ∅)

4′

({d}, ∅, ∅) ({d}, ∅, ∅)

({d}, ∅, ∅)

(∅, {d}, ∅)

(∅, {d}, ∅)

({d}, ∅, ∅)

(∅, {d}, ∅)

({d}, ∅, ∅)

(∅, {e}, ∅)

({d}, ∅, ∅)
({d}, ∅, ∅)

({d}, ∅, ∅)

({d}, ∅, ∅)

1

3 42

(∅, {a}, ∅)
(∅, {b}, ∅)

(∅, {a,b}, ∅)

5 6

(∅, {b}, ∅) (∅, {a}, ∅)

({c}, ∅, ∅)

(∅, {a, d}, ∅) (∅, {b, d}, ∅)

({c}, ∅, ∅)

({(c, 2)}, ∅, ∅)

(∅, {a,b, d}, ∅)

({e}, ∅, ∅)
τ (wait)

Figure A.1: MTS [out(a) | out(b)] and MTS-mp[encMTS(out(a) | out(b))]

Appendix B

B.1 Sample Data derived from our Tool PrInSESSA

Reach-

CC

Uncrit-

CC

of reach.

substates

of crit.

substates

Percentage

185,883 1,584 0.85%

x 81,534 432 0.5%

x 185,883 342 0.18%

x x 81,534 24 0.03%

Figure B.1: Critical substates in the system DP(6) for d = 4 depending on

which variants of Cross-Checking we apply.

B.2 Checking for small Deadlocks

Here, we are going into more detail concerning how checking a single substate

for deadlocks is done efficiently.

Let D = {i1, . . . , ik} be a (not necessarily minimal) deadlock of size |D| =

k ≤ d in some global state q. According to our deadlock definition, for all

interactions α in which at least one component i ∈ D participates there is

at least one component j ∈ D that participates in α and does not enable its

corresponding action in qj .

200

B.2 Checking for small Deadlocks 201

In order to prove that there is no deadlock of size |D| = k ≤ d in any

reachable global state q, we loop over all substates of size < d (cf. Algo-

rithm 6) and for those that are marked reachable in the reachability array

of the corresponding subsystem, we check (cf. Algorithm 7) whether there is

at least one interaction in which one of the components participates and en-

ables its corresponding action and for which neither of the others participates

and denies its corresponding action. If such an interaction can be found for

(qi1 , . . . , qix), then (qi1, . . . , qix) cannot be a deadlock. If such an interaction

is found for every substate (qi1 , . . . , qix) then there is no small deadlock in

Sys. The number of possible substates of size < d is in O(nd · md), thus

in particular the number of substates we loop over is in O(nd · md). As we

have to check all interactions and the actions therein (cf. Algorithm 7) for

every reachable substate, the complexity for our search for small deadlocks

is bounded by O(nd · md ·
∑

α∈Int |α|).

202 B.2 Checking for small Deadlocks

Algorithm 6 Check for small Deadlocks

1: for x := 2 to d do

2: for all subsets K ′′ = {i1, . . . , ix} of K do

3: for all q′′ = (qi1 , . . . , qix) ∈ QK ′′ do

4: reachable := true;

5: for all subsystems SysK ′ with K ′′ ⊆ K ′ (and |K ′| = d) do

6: for all q′ ∈ Ext(q′′, K ′) do

7: if reach(SysK ′)[q′] then

8: Check for Deadlock(q’)

9: end if

10: end for

11: end for

12: end for

13: end for

14: end for

B.2 Checking for small Deadlocks 203

Algorithm 7 Check for Deadlock(q′ = (qi1, . . . , qix))

1: for all α = {aj1, . . . , ajk
} ∈ Int do

2: Participation := False;

3: Denial := False;

4: for l = 1 to k do

5: if jl ∈ {i1, . . . , ix} then

6: if ajl
∈ ea(qjl

) then

7: Participation = True;

8: else

9: Denial = True;

10: end if

11: end if

12: end for

13: if (Participation AND not(Denial)) then

14: Break; . Substate cleared. Proceed with the next substate.

15: end if

16: end for

17: if (not(Participation) OR Denial) then

18: Output“Local deadlock in (qi1 , . . . , qix)”;

19: end if

Index

∼=, see isomorphism

∼=R, see isomorphism up to a label re-

lation R

↓, see projection

�, see weak step simulation

3-satisfiability, 86

1-safe

markings, 37

Petri nets, 37

1SN, see 1-safe Petri nets

abstract interpretation, 4, 170

action a in IS, 26

approximation, 131

artifacts, 132

asynchronous communication, 16

Availability (set), 33

availability in IS, 31

bisimilarity, 49

blocking chain, 122

C, see set of connectors

CFN, see communication-free nets

channel-based communication, 16

communication structure, 178

communication-free nets, 38

Comp, see set of complete interac-

tions

component, 26

compositionality, 18

connectedness of a system, 159

connector, 32

coordination languages, 39

Cov(q′, K ′), see covering

covering, 164

Cross-Checking, 138

for reachability, 139

for uncriticalness, 157

d (parameter), 114, 116

deadlock

global

in IS, 30

in 1SN, 38

large, 143

204

INDEX 205

local

in IS, 29

minimal in IS, 30

small, 143

deadlock-freedom, 2

in IS, 30

initial, 119

deductive program verification, 4, 169

degree of synchronization, 17

dining philosophers

Dijkstra’s, 3

Tanenbaum’s, 134

distributability, 179

divergence, 23

of a Minsky machine, 48

DL (predicate), 30

DLLarge (predicate), 143

DLSmall (predicate), 143

enabled

actions in IS, 27

actions in LinCa, 41

transitions in PN, 35

endogenous communication, 17

equivalences, 4, 48

exogenous communication, 17

Ext(q′, K ′), see extensions

extensions, 116

finite models, 15

flow relation, 35

GInt, see interaction graph

GInt(K
′), see interaction graph induced

GPart(q
′), see participation graph

GWait(q), see waiting graph

GDIS (set), 33

global behavior

of IS, 27

of LinCa, 43

of MM, 47

of PN, 35

identity preservation, 18

infinite models, 15

initial marking, see marking initial

Int, see set of interactions

interaction, 26

enabled, 28

graph, 159

induced, 164

original, 154, 156

set, 26

interaction systems

generalized, 26

original, 32

interleaving semantics, 15

IS, see interaction system generalized

206 INDEX

isomorphism, 50

up to a label relation R, 50

ITS semantics, see LinCa ITS

K, see set of components

Kleene star (operator), 21

labeled transition system, 21

LDIS (set), 33

LinCa, 41

cde, 68

ITS, 43

MTS-mp, 46

MTS, 45

Linda

calculus, see LinCa

language, 39

liveness

in 1SN, 38

in IS, 31

local indicator (predicate), 131

M, see set of markings

m (input parameter), 27

marking, 35

initial, 35

Minsky machine, 46

set, 48

MM, see Minsky machine set

model-checking, 4, 172

MTS semantics, see LinCa MTS

MTS-mp semantics, see LinCa MTS-

mp

multiset, 23

-complement \, 23

-union], 23

power ℘(S), 23

representation, 23

n (input parameter), 26

occurence

of a component i, 30

of an interaction α, 30

P , see places

participation

graph, 146

of a component, 27

part pos (predicate), 156

Petri net, 35

places, 35

postset

of a place p, 35

of a transition t, 35

preset

of a place p, 35

of a transition t, 35

INDEX 207

Progress (set), 33

progress in IS, 30

projection, 114, 115

proper state change, 117

Reachd(Sysi,j,k)[j] (set), 118

Reach′(SysK ′) (set), 137

Reachability (set), 33

reachability

array, 120, 130

by a component j, 117

in 1SN, 37

in IS, 22

reachable state space, 22

RefLarge (predicate), 150, 157

RefSmall (predicate), 144

reflexive and transitive closure, 21

Refutable(K ′, K̃), see set of refutable

states

Refutable(K̃), see set of refutable states

replication, 41

in-guardedness, 41

run, 22

set (operator), 23

set of

complete interactions, 32

components, 26

connectors, 32

markings, 36

refutable states, 140

silent action τ , 22

state space

approximation, 114

explosion, 4

finite, 15

infinite, 15

reachable, 22

storage-based communication, 16

Subs(K ′), see substates induced by

K ′

substates induced by K ′, 115

subsystem, 115

reachability, 115

sufficient conditions, 4, 113, 171

synchronous communication, 16

T , see transitions

termination, 22

of a Minsky machine, 48

token, 36

trace equivalence, 49

traces, 22

transitions, 35

trilateration

example, 125

method, 124

208 INDEX

true-concurrency semantics, 15

TS, see tuple space

tuple space, 40

configuration, 40

Uncritical (predicate), 156

visible transition relation, 22

wait (operator), 71

wait (relation), 149

wait-for (relation), 120

waiting graph, 148

Warshall’s algorithm, 152

weak step simulation, 49

witness, 163

