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Abstract. State space explosion causes most relevant behavioral ques-
tions for component-based systems to be PSPACE-hard. Here, we exploit
the structure of component-based systems to obtain a first approximation
of the reachable global state space. In order to improve this approxima-
tion we introduce a new technique we call cross-checking. The resulting
approximation can be used to study global properties of component-
based systems, which we demonstrate here for local deadlock-freedom.

1 Introduction

In this paper we deal with reachability in the global state space of a component-
based system with n components. We present a technique that builds on the anal-
yses of certain subsystems generated by d << n components, where d is fixed.
We explain our approach using the model of interaction systems introduced in
[GS03] by Gössler and Sifakis as a model for component-based systems. As typ-
ical for component-based systems, the description of interaction systems strictly
separates the description of the components from the way they are put together,
i.e. the glue code. I/O-Automata [LT89] and interface automata [dAH01], e.g.
can be considered as a subclass of interaction systems, for the latter feature a
more general notion of communication. More details about interaction systems
and their properties can be found in [Sif04, Sif05, GGM+07b, GGM+07a, GS05,
BBS06, MMM07a]. A framework for component-based modeling using interac-
tion systems has been implemented in [BBS06, Goe06]. Please note that the
ideas presented in this paper do not rely heavily on the model but can be trans-
ferred to other models as long as cooperation of systems forms the top level of
system description.

For interaction systems the size of the global state space of a component
based system may be exponential in the number n of components and it has
been shown that deciding most important behavioral properties is PSPACE-
complete [MM08b]. There are various ways to deal with this problem, e.g. par-
tial order reduction or abstraction. Another approach is to establish conditions
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that use compositionality and can be tested in polynomial time to ensure the
desired properties, see e.g. [AC05, MMM07a, MMM07b]. Moreover one may im-
pose architectural constraints concerning the communication structure of the
component system [AG97, BCD02, MM08a].

In this paper we first exploit the structure of the component system to obtain
(in polynomial time) a first over-approximation of the global state space. For this,
we consider subsystems built from a fixed number d of components (which can be
considered a parameter) and perform reachability analyses there. Restricting our
view to sets of subsystems can be considered a form of locality-based abstraction.
Different related techniques have been studied in [BPR01, ASCN99, Kov]. A
general and abstract treatment of locality-based abstraction can be found in
[EGS05].

The contribution of this paper basically consists of the following two steps.
First the straight-forwardly computed subsystem approximations are enhanced
by a technique called cross-checking. Second, the resulting approximations can
be used to derive conditions on the subsystems that guarantee global properties.

We demonstrate this for local deadlock-freedom. Deadlock-freedom is an im-
portant property in itself and moreover, establishing safety properties can be
reduced to establishing deadlock-freedom.

The paper is structured as follows. Section 2 presents the model and an exam-
ple that will be used throughout the paper. In Section 3 we explain the general
approach of investigating subsytems in order to prove properties on the reach-
able global state space. Section 4 introduces and analyzes cross-checking. As an
application we establish in Section 5 a polynomial time checkable condition for
deadlock-freedom that is tested in subsystems and makes use of our approxima-
tion. Section 6 discusses related work. Section 7 depicts our (partially still in
progress) implementations. Finally, we give a short conclusion in Section 8.

2 Interaction Systems

We consider here interaction systems, a model for component-based systems that
was proposed and discussed in [GS03].

2.1 Syntax and Semantics

Definition 1. Interaction Systems
An interaction system is a tuple Sys = (K, {Ai}i∈K , Int, {Ti}i∈K), where K
is the set of components. W.l.o.g. we assume K = {1, . . . , n}. Each component
i ∈ K offers a finite set of ports (resp. actions) Ai for cooperation with other
components. The port sets Ai are pairwise disjoint. Cooperation is described by
the interaction set Int. Each component i is provided with a local behavior Ti.

An interaction is a finite, non-empty set of actions α ⊆ ⋃
i∈K Ai. An inter-

action α = {ai1 , . . . , aik
} with aij ∈ Aij describes that the components i1, . . . , ij

cooperate via these ports. Interactions α are subject to the constraint that for
each component i at most one action ai ∈ Ai is in α. An interaction set Int
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is a finite set of interactions, s.t. every action of every component occurs in at
least one interaction of Int.

The local behavior of each component i is described by a labeled transition
system Ti = (Qi, Ai,→i, q

0
i ), where Qi is the finite set of local states, →i⊆

Qi × Ai × Qi is the local transition relation and q0
i ∈ Qi is the local starting

state.

Definition 2. Participation and Enabled Actions
Given an interaction α ∈ Int and a component i ∈ K we denote by i(α) := Ai∩α
the participation of i in α.
For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈ Qi,
s.t. qi

ai→i q′i}. We assume that the Ti’s are non-terminating, i.e. ∀i ∈ K ∀qi ∈
Qi ea(qi) �= ∅.
Definition 3. Semantics
The global behavior TSys = (Q, Int,→Sys, q

0) of Sys (henceforth also referred
to as global transition system) is obtained from the behaviors of the individual
components, given by the transition systems Ti, and the interaction set Int in a
straightforward manner:

– Q =
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.

– The relation →Sys ⊆ Q × Int × Q, defined by
∀α ∈ Int ∀q, q′ ∈ Q q = (q1, . . . , qn) α→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi
i(α)→i q′i if i(α) �= ∅ and q′i = qi otherwise).

– q0 = (q0
1 , . . . , q0

n) is the global starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition
system when each component i participating in α is ready to perform its part
i(α).

Example 1. In the following we consider an interaction system that models Tanen-
baum’s solution [Tan08] to Dijkstra’s Dining Philosophers problem. Tanenbaum
suggests that each of the philosophers is provided with a separate semaphore that
she has to set in order to leave her thinking state. A semaphore however can only
be set if its “neighbour” semaphores are unset. Once a philosopher has eaten, she
puts back the forks and resets her semaphore. This can be considered an elegant
solution as it is symmetric and allows for maximum efficiency (meaning that it still
allows for a global state where every second philosopher is in her eating state). On
the other hand this is a deadlock-free system with a natural interaction structure
whose reachable global state space is exponential in p. This solution can be mod-
eled as an interaction system as follows, where p is the number of philosophers:
DP (p) = (K(p), {Ai}i∈K(p), Int(p), {Ti}i∈K(p)), where
K(p) = {Phil0,. . .,Philp−1,Fork0,. . .,Forkp−1,Sem0,. . .,Semp−1,},
Int(p)=

⋃
0≤i≤p−1{{pickleftPhili , occupyForki},{pickrightPhili , occupyForki−1},

{priorityPhili , downSemi , allowSemi−1 , allowSemi+1},
{dropPhili , upSemi , vacateForki−1 , vacateForki}},
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Fig. 1. Tanenbaum’s Dining Philosophers - Local Transition Systems

where calculation is modulo p, and the local behaviors Ti and (implicitly the)
port sets Ai are given in Figure 1.

2.2 Reachability

For most properties of interaction systems we must determine which states in Q
are reachable from the global starting state. Here we propose to first investigate
reachability in subsystems which is defined as follows.

Definition 4. Reach(Sys) := {q ∈ Q | q0 →∗
Sys q}, where →∗

Sys denotes the
reflexive and transitive closure of →Sys.

Definition 5. Substates
Let K ′ ⊆ K and q be a global state. Then q ↓ K ′ denotes the projection of
q to the components in K ′ and we call q′ = q ↓ K ′ a substate. We refer to
the components K ′ that occur in q′ by K(q′). We also use the ↓-operator to
denote projections of substates. Finally, let QK′ =

∏
i∈K′ Qi and Subs(K) =⋃

K′⊆K QK′ .

Definition 6. Subsystems
Let K ′ ⊆ K. The subsystem SysK′ is given by (K ′, {Ai}i∈K′ , IntK′ , {Ti}i∈K′),
where IntK′ := {αK′ = α∩(

⋃
i∈K′ Ai) | α ∈ Int}\{∅}. Note that SysK′ accords to

our definition of an interaction system, so all definitions for interaction systems
apply.

Definition 7. Extensions
Let q′ be a substate. Then Ext(q′, K ′) for K ′ ⊆ K denotes the set of extensions
of q′ in K ′ and is defined by Ext(q′, K ′) = q′ × ∏

i∈K′\K(q′) Qi. If K ′ = K(q′)
let Ext(q′, K ′) = {q′}. We say that a substate q̂′ is an extension of a substate q′

if K(q′) ⊆ K(q̂′) and q̂′ ↓ K(q′) = q′.

The definition of a subsystem implies that if a state q is reachable in the global
transition system, then for every K ′ ⊆ K the state q ↓ K ′ is reachable in the
corresponding subsystem. We formalize this observation in the following lemma.
Lemma 1. Let Sys = (K, {Ai}i∈K , Int, {Ti}i∈K)
q ∈ Reach(Sys) ⇒ ∀K ′ ⊆ K, (q ↓ K ′) ∈ Reach(SysK′).
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Corollary 1. Let f(Reach(SysK′)) :=
⋃

q′∈Reach(SysK′ ) Ext(q′, K). Then
Reach(Sys) ⊆ ⋂

K′⊆K, with |K′|=d f(Reach(SysK′))

Remark 1. Each Reach(SysK′) is a compact representation of f(Reach(SysK′))
which is in turn a very coarse over-approxmation of Reach(Sys).

3 Proving Properties on Overapproximations

Let us assume we want to check a property P on each state of the reachable
global state space of Sys. In a first approach we might proceed as follows.

– We choose a parameter d << n and calculate the reachable states for each
subsystem with d components. Each reachable substate q′ = (qi1 , . . . , qid

) is
a compact representation of Ext(q′, K).

– We formulate a predicate P ′ such that the validity of P on a global state q
is implied by the validity of P ′ on the projections of q,
[∀K ′ ⊆ K, |K ′| = d P ′(q ↓ K ′)] ⇒ P (q), hence
[∀K ′⊆K, |K ′|=d ∀q∈Reach(Sys) P ′(q↓K ′)]⇒P (Reach(Sys))

Clearly, we do not want to handle explicitly global states at all. Instead we pro-
pose to use the implication
[∀K ′⊆K, |K ′|=d∀q′∈Reach(SysK′) P ′(q′)]⇒P (Reach(Sys))

The advantage of this approach is immense: Instead of a complexity that is
exponential in |K| = n, we have a complexity that is polynomial (with degree
d) in n and m. This is because for K ′ ⊆ K with |K ′| = d, Reach(SysK′) can be
computed in O(md), where m = maxi∈K′ |Qi| thus we may compute resp. store
the reachable state spaces of all subsystems with d components in time resp.
space O(

(
n
d

) · md).

Example 2. For the dining philosophers example with p = 6 (i.e. |K| = 18) and
d = 4 the sum of the sizes of the investigated substate spaces is 229.095 compared
to 64.000.000 global states in the original system. Obviously the advantage is
much greater for a larger parameter p.

However, there is an obvious drawback to our present approach:

Considering subsystems with d << n components neglects much information.
Indeed there will be many reachable substates that do not originate from a
projection of a global reachable state but are “artefacts”. If we check condition
P ′ on many such artefacts we run the risk that P ′ is violated and we can not
conclude P .

Example 3. For the dining philosophers example with p = 6 (i.e. |K| = 18) and
d = 4, only 43212 of the 229.095 states in the state spaces of the subsystems are
unreachable. This corresponds to 18,85%.
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4 Cross-Checking

In this section, we introduce cross-checking as a technique to eliminate artefacts.
In a first step, we consider the unreachable states.

Lemma 2. Let Reach(SysK′) = QK′ \ Reach(SysK′) be the set of states that
can not be reached in SysK′ , Refuted =

⋃
K′′⊆K,|K′′|=d f(Reach(SysK′′)) and

XK′ := f(Reach(SysK′)) \ Refuted.
Then i) Refuted ⊆ Reach(Sys) and

ii) Reach(Sys) ⊆ XK′

As we noted before, the sets Reach(SysK′) may contain many artefacts. We
want to use Refuted to reduce the number of artefacts. However we can not
use Lemma 2 directly as it involves the evaluation of the function f . Therefore
we define Ref(SysK′) := {q′ ∈ Subs(QK′) | Ext(q′, K ′) ∩ Reach(SysK′) = ∅}
and compute (in polynomial time) a Reach′(SysK′) with f(Reach(SysK′)) ⊇
f(Reach′(SysK′)) ⊇ XK′ as follows.

Theorem 1. Let
Reach′(SysK′) :=Reach(SysK′) \ Ext(

⋃
K′′⊆K,|K′′|=d Ref(SysK′′) ∩ Subs(K ′), K ′).

Then XK′ ⊆ f(Reach′(SysK′)).

By cross-checking we refer to the computation of the various sets Reach′(SysK′)
by removing the elements in Ext(

⋃
K′′⊆K,|K′′|=d Ref(SysK′′) ∩ Subs(K ′), K ′)

from Reach(SysK′) as described in Algorithm 1. For reasons of efficiency Algo-
rithm 1 represents each set Reach(SysK′) by an array reach(SysK′) (that we
refer to as “table”) of booleans for all states in QK′ . In such a table we have
“reach(SysK′)[q′] = true” iff q′ ∈ Reach(SysK′). Also for reasons of efficieny
Algorithm 1 does not loop over the various sets Reach(SysK′) and the therein
reachable substates but rather over all states in {q′′ ∈ Subs(K) | |q′′| < d}. For
a state q′′ we decide (by looking up the reachability flags of its extensions in the
various tables reach(SysK′)) whether it belongs to

⋃
K′⊆K,|K′|=d Ref(SysK′). If

this is the case, we set all reachability flags of all extensions of q′′ to false. If this
is not the case, we add q′′ to an initially empty list “list-of-possible-substates”
that will be needed in Section 5.1.

Example 4. Let K ′
1 = {Phil1, Phil2, Fork1, Fork2}. In SysK′

1
we are able (by

performing the connectors {priority1} and {priority2}) to reach the substate
q′ = (priorityPhil1 , priorityPhil2 , vacantFork1 , vacantFork2). However if we con-
sider the substate q′′ = (priorityPhil1 , priorityPhil2) of q′ and its occurrence in
the subsystem that is implied by K ′

2 = {Phil1, Phil2, Sem1, Sem2} we learn
that no extension of q′′ is in Reach(SysK′′). Thus q′′ ∈ Ref(Sys′′K)∩Subs(K ′),
so we have q′ �∈ Reach′(SysK′).

After the first application of cross-checking for the subsystem reachabilites, we
will have marked 147561 of the 229095 substates unreachable. This corresponds
to 64,41%.

Lemma 3. The sets Reach′(SysK′) for all subsystems SysK′ with d compo-
nents can be computed in an overall amount of time that is in O(d · nd · md).
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Proof: In the following we present Algorithm 1 Cross-Checking that computes
the sets Reach′(SysK′) within the specified time bounds.

Remark 2. Apart from the factor d (which can be considered a constant), our
cross-checking algorithm remains within the asymptotic time bounds already
given by the first step of performing the reachability analyses of the subsystems.
We consider this to be an important property, as any refinement approach
that attempts to increase the number d of considered components would instead
result in a complexity in Ω(nd+1).

Remark 3. Note that Algorithm 1 may be applied iteratively to the result of the
previous application thus further reducing the number of states that are marked
reachable until we reach a fixpoint. It is an open question how many iterations
will be needed.

Algorithm 1 Cross-Checking
1: PROCEDURE Cross-Checking
2: for x := 1 to (d − 1) do
3: for all subsets K′′ = {i1, . . . , ix} of K do
4: for all q′′ = (qi1 , . . . , qix ) ∈ QK′′ do
5: reachable := true;
6: for all subsystems SysK′ with K′′ ⊆ K′ (and |K′| = d) do
7: occurrence := false;
8: for all q′ ∈ Ext(q′′, K′) do
9: occurrence := occurrence OR reach(SysK′)[q′];

10: end for
11: reachable := reachable AND occurrence;
12: end for
13: if reachable = false then
14: for all subsystems SysK′ with K′′ ⊆ K′ (and |K′| = d) do
15: for all q′ ∈ Ext(q′′, K′) do
16: reach(SysK′)[q′)] := false;
17: end for
18: end for
19: else add q′′ to list-of-possible-substates;
20: end if
21: end for
22: end for
23: end for
24: END Cross-Checking

5 Detecting Deadlocks

Deadlock-freedom is an important property in itself and in addition establish-
ing safety properties can be reduced to establishing deadlock-freedom. In this
section, we present a definition of some locally checkable predicate P ′ that im-
plies (in the sense that was described in Section 3) local deadlock-freedom for
interaction systems.
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Definition 8. (Minimal) local Deadlock
Given an interaction system Sys and a global state q we say that a set of com-
ponents D ⊆ K is a local deadlock in q if every interaction in which any of
the components in D could (in its present local state) participate is blocked by
another component in D. More formally:
∀i ∈ D ∀α ∈ Int : (ea(qi) ∩ α �= ∅) ⇒ (∃j ∈ D j(α) �⊆ ea(qj)).
Obviously if we reach a global state q such that some set D ⊆ K is a local dead-
lock in q no component in D can ever again participate in any interaction.
D ⊆ K is a minimal local deadlock in q if no proper subset of D is a local dead-
lock in q. A system Sys is locally deadlock-free if no state q is reachable such
that there is a local deadlock in q.

Example 5. Let us consider a global state q, where
q ↓ {Phil1, Fork1, Phil2, Fork2, Phil3} =
(wantsleftPhil1 , occupiedFork1

,wantsbothPhil2 , occupiedFork2
,wantsrightPhil3). In

this case, D = {Phil1, Fork1, Phil2, Fork2, Phil3} is a minimal local deadlock
in q. (However, no such q is reachable in any of the systems DP (p).)

Definition 9. Small vs. Large Deadlocks
When we compute the subsystem reachabilities as described in Section 3 we
choose a value for the parameter d. Henceforth we will call local deadlocks D
with |D| ≤ d small local deadlocks and local deadlocks D with |D| > d large
local deadlocks.

In order to prove for a system Sys the predicate P = “Local Deadlock-Freedom”
it is sufficient to prove for some fixed d << n that there are neither small nor
minimal large local deadlocks reachable in Sys. When we traverse the reachable
substates in the various Reach′(SysK′) we will be able to identify deadlocks of
size |D| ≤ d directly, whereas the existence of deadlocks of size |D| > d will have
to be excluded by a sufficient condition. In the following subsections, we describe
a locally checkable (i.e. checkable in the subsystems) P ′ that - when true on all
substates in all Reach′(SysK′) - ensures the validity of P .

5.1 Defining and Checking a Condition for Small Deadlocks

To deal with the question of small local deadlocks it is sufficient to prove that
there are no deadlocks of size ≤ d in the substates that are marked reachable
in the reachability tables of the investigated subsystems. Again, it is infeasible
to check all 2d subsets of every substate of every subsystem, because this would
yield up to 2d ·(n

d

)·md loop cycles in the first place. Instead, we will directly check
the substates of size 1 to d− 1 that have been added to list-of-possible-substates
in Algorithm 1.

5.2 Defining a Condition for Large Deadlocks

Obviously, we can not directly identify a large local deadlock in a subsystem
with d components. Instead we are going to check a condition which is sufficient
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for deadlock-freedom. In order to formulate this condition we first introduce the
following relation between the local states of the components’ transition systems.

Definition 10. “qi waits for qj”, (qi ∈ Qi, qj ∈ Qj)
We say qi waits for qj if ∃α ∈ Int, s.t. α ∩ ea(qi) �= ∅ ∧ j(α) �⊆ ea(qj).

I.e. qi waits for qj if j might prevent i from participating in an interaction in
a corresponding global state q. If components prevent each other from partici-
pating in interactions then they might be in deadlock. The following definition
assigns to a global state q (resp. a substate q′) a directed graph based on the
relation introduced in Definition 10.

Definition 11. Wait-for-graph
For a system Sys and a global state q we define the wait-for-graph WFG(q) =
(V, E) by:
V = {qi | 1 ≤ i ≤ n} and E = {(qi, qj) ∈ V × V | qi waits for qj}.
For K ′ ⊆ K and a corresponding substate q′ = q ↓ K ′ we denote by WFG(q′)
the subgraph of WFG(q) generated by V ′ = {qi ∈ V | i ∈ K ′}.
Given a large deadlock D ⊆ K in a reachable global state q we will be able to
detect (in at least one subsystem) the following pattern.

Theorem 2. If Sys has a large minimal deadlock D in a global state q, then
there is a subset K ′ ⊆ D with |K ′| = d and a linear order (i1, . . . , id) of the
components in K ′ such that
k < l ⇒ qil

is reachable from qik
in WFG(q ↓ K ′).

Example 6. When we apply P ′ (for DP (6) with d = 4) to the reachable state
spaces Reach(SysK′) that we computed in the first place, we will detect 1584
(of reachable 185883) substates for which P ′ is not valid.

ApplyingP ′ (forDP (6)withd = 4) to the reachable state spacesReach′(SysK′)
that we gain after applying cross-checking, the number of substates for which P ′

is not valid decreases to 432 (of reachable 81534).
These numbers induce that among the substates whose reachability was re-

futed via cross-checking there are indeed critical ones. Even more the percentage
of reachable substates that are critical has decreased. This is due to a tendency
in our approach to leave uncritical substates marked reachable.

5.3 Complexity of Checking Our Condition for Large Deadlocks

According to Section 3 and Theorem 2 we may prove that a system Sys does
not contain any reachable minimal large deadlocks by proving that for neither
of the subsystems SysK′ (with K ′ ⊆ K and |K ′| = d) and their substates q′ in
Reach′(SysK′) there is a linear order as described above for the nodes in WFG(q′).

To do so, we first construct, for every subsystem with d components and
every therein reachable substate q′, the graph WFG(q′). Then we could apply the
following procedure Order which finds a linear order as described in Theorem 2,
if there is any.
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Preprocessing: Constructing the wait-for-relations
As a preprocessing we can (in O((n·m)2)) compute a (n·m×n·m)-matrix W with
W (qi, qj) = 1 if qi waits for qj , W (qi, qj) = 0 otherwise. This matrix includes
for every substate q′ the information about WFG(q′). Thus for a substate q′, we
simply create the d × d-matrix for WFG(q′) and fill it by copying the relevant
information from our matrix W . This can be done in O(d2).
Procedure Order:
Perform breadth-first search for every local state in WFG(q′). If there is one
state qj from which all other states can be reached make i1 := j. Now find a
state from which all remaining (not yet ordered) states are reachable and so
on. Whenever such a state cannot be found, abort. Return the order when all
components are ordered.
Proof of Correctness:
It is obvious that if the Procedure Order is not aborted then a returned order
suffices our requirements. We show that if there is a linear order as described in
Theorem 2, then Procedure Order will find one.

Note that if there is a linear order of the components in K ′ as described in The-
orem 2 then this also holds for every subset of K ′ (w.r.t. the graph WFG(q′)).
This means in every step of Procedure Order we can choose the next component
for the linear order and it is always guaranteed that the linear order so far can
be enhanced (by a linear order of the remaining components) to a correct linear
order for all d components.
Actual Implementation and Complexity:
The description of Procedure Order above will not be implemented directly
but rather acts as a makeshift for ease of understanding and for our proof of
correctness. For our implementation, we first compute the transitive closure of
WFG(q′). This is possible in O(d3). Thus, instead of performing up to d breadth-
first-searches we can simply determine the next component in our linear order
(d times) by examining for each of the d components, if the remaining (not yet
ordered) components are reachable from it (a comparison which can be done in
O(d) using the transitive closure).

So the Procedure Order can be performed in an overall time in O(d3).
The overall complexity of our check for large deadlocks is thus bounded by

O(md · nd · d3).

5.4 Connected Subsystems

Definition 12. Interaction Graph & Connected Systems
For an interaction system Sys we define the interaction graph IG = (V, E)
by: V = K and E = {{i, j} | ∃α ∈ Int (α ∩ Ai �= ∅ ∧ α ∩ Aj �= ∅)}
We call an interaction system connected if its interaction graph is connected.

Note that for the purpose of deadlock detection we may restrict our attention
to connected systems Sys (as for an unconnected system it is equivalent to
prove its interaction graph’s connected components deadlock-free). However if
the original interaction system is connected, we may restrict all our observations
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(i.e. reachability analyses, cross-checking and the checks for small resp. large
deadlocks) - without loss of correctness or even loss of information - to connected
subsystems.

Example 7. For Tanenbaum’s dining philosphers as modelled here, the maximum
degree of a node in the interaction graph is 9. This makes it easy to derive that
the maximum number of connected subsystems is bounded by n · 9d−1 = O(n)
for a fixed choice of d.

6 Related Work

Many important approaches have been developed in the past to tackle the prob-
lem of state space explosion. A wide spectrum of methods for approximation
and/or reduction of the state space, ranging from partial order reduction, ex-
ploiting equivalences to abstraction/refinement techniques have been investi-
gated and e.g. incorporated in model checking tools and abstract interpretation
approaches. Our approach to establish properties of component based systems
is in a certain sense complementary but can nevertheless be put into compari-
son with some existing techniques. The basic principles of our approach can be
summarized as follows.

1) We exploit the knowledge about the interaction structure of the system, i.e.
the interaction graph. For this we determine the connected subgraphs with d
nodes in this graph (d << n a constant).
2) Then we calculate the reachable state spaces for the subsystems belonging to
these subgraphs.
3) We apply cross-checking to delete “artefacts” within these subsystems.
4) We establish a condition that is to be checked on the subsystems and when
satisfied guarantees a global property.
5) All steps can be performed in polynomial time (bounded by a polynomial
with degree d).

Step 2) can be seen as a locality based abstraction in the sense of [EGS05] which
is the most general paper on locality-based abstraction we know of. When we con-
sider a subsystem with d components then this corresponds to an observer that has
access to these d components of the system. (If each observer has access to exactly
one component, the special case of Cartesian abstraction [BPR01, Arn94] arises.)
However a closer look to the notion of partial transition relation in locality based
abstractions of [EGS05] and hence the notion of local reachability, shows that our
approach has to be distinguished from theirs. In [EGS05] one condition for a par-
tial state p1 to evolve to state p2, i.e. t(p1, p2), is that p1 matches some state p with
respect to the kernel of the transition t.(Please note that each transition relation
t of [EGS05] corresponds to an interaction α of our model.)

In one of our local systems given by the components {i1, ...id} a local transition
can take place in a sub-state if all partners of an interaction α that are part of the
subsystem offer their part of the interaction, i.e. we then perform α∩⋃

1≤i≤d Aid
.
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As we may obtain artefacts by proceeding in such a way, called loss of in-
formation in [EGS05], we then apply cross-checking in step 3) to eliminate as
many artefacts as possible by comparing the subsystems. To the best of our
knowledge this technique has not been applied in the context of state space in-
vestigations. Cartesian abstraction [BPR01, Arn94] which involves finding the
smallest Cartesian product that contains a given set has a similar purpose for
the case d = 1. Cross-checking is however closely related to techniques em-
ployed in the relational model of data bases. Speaking in data base terminology
we decompose an initial data base scheme into sub-schemes (corresponding to
our subsystems). Applying the join operation �� to all these subsystems, i.e.
Reach(SysK′

1
) �� Reach(SysK′

2
) �� ... �� Reach(SysK′

k
) (where k =

(
n
d

)
) would

yield the best over-approximation one can get when using locality based abstrac-
tion if no further knowledge is available. However calculating these joins leaves
us with the same complexity issue as calculating the reachable global state space.
So we avoid evaluating this sequence of joins and perform instead the comparison
of pairs of subsystems.

Concerning step 4), the conditions on subsystems that guarantee global prop-
erties, the closest work to ours is by [AC05] on deadlock-freedom who base their
work on concurrent programs but employ a similar notion of subsystems and lo-
cal transition relation. They consider subsystems of size 3 but apply no technique
comparable no cross checking.

7 Implementation

All presented techniques have been implemented in our tool “PrInSESSA” [MS08]
where in addition we also apply a variant of cross-checking to the detection of
minimal large deadlocks.

In order to allow for a quantitative comparison with other tools, a BDD-
based framework is presently being implemented. First benchmarks show that
the BDD-based variant can prove instances as large as DP (500) deadlock-free
within minutes.

8 Conclusion and Further Work

We presented a method to obtain an enhanced over-approximation of the global
state space of a component-based system with n components in polynomial time.
The method consists of choosing a value for d, investigating subsystems consist-
ing of d components in a first step (in O(nd · md)) and then improving this
approximation by cross-checking (in O(d · nd · md)). The computation of the
first step can be improved in various respects. Firstly, for the purpose of proving
deadlock-freedom we do not have to consider all

(
n
d

)
subsystems but only such

that are connected. Secondly, the computation of the various sets Reach(SysK′)
can be performed in parallel. Our approximation can be used to investigate
global properties by considering subsystems and checking conditions on them
which requires only polynomial cost. We showed how this can be achieved for



Cross-Checking - Enhanced Over-Approximation 201

the property of local deadlock-freedom. Interesting open theoretical questions
are e.g. how many iterations are needed at most until the iterative application
of cross-checking reaches a fixpoint and in which complexity class the exact
computation of the set XK′ defined in Section 4 lies.
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