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Abstract. We study complexity issues for interaction systems, a gen-
eral model for component-based systems that allows for a very flexi-
ble interaction mechanism. We present complexity results for important
properties of interaction systems such as local/global deadlock-freedom,
progress and availability of components.

1 Introduction

First introduced by Sifakis et al. [GS03], interaction systems are a general model
for component-based systems. Its main features can be summarized as follows.
The description of a component is hidden to any other component, in particular
a component does not refer to methods or operations of other components. Com-
ponents offer ports for cooperation with other components. Components are put
together by some kind of a (separate) gluing mechanism in a such way that the
identity of each component is maintained. Components and the glue can thus
be modified freely. The gluing is realized via connectors, that consist of ports
of various components. Connectors can be of different size and each port can
participate in more than one connector.

The model has been discussed in [GS03, Sif05, GS05, GGM+07]. In [GQ07]
the model has been enriched by hierarchical connectors. A version including
variables and value passing was implemented in the BIP-project [BBS06] and in
the Prometheus-project [Goe06] and was used to implement and study a variety
of component-based systems. The relevance of the model is also stressed by the
fact that it is used as a common semantic framework in the European SPEEDS-
project [GO07].

Interaction systems can be viewed as a generalization of interface automata
[dAH01] as well as of input/output automata [LT89].

Given that interaction systems are a suitable and comfortable framework to
model component-based systems it is interesting to investigate their properties.

Here, we study algorithmic properties of interaction systems, in particular
reachability, local and global deadlock-freedom, progress and availability of com-
ponents. These properties are defined on the global state space which is expo-
nentially large in the number of components. We show that deciding either of
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the mentioned properties is PSPACE-complete. To do so we build on a connec-
tion between interaction systems and 1-safe Petri nets that was first presented in
[MM08b] and yields PSPACE-hardness for reachability in interaction systems.

This paper is organized as follows. In Section 2 we give the basic definitions
for interaction systems and the various properties we are going to discuss and
point out the advantages of interaction systems over the closely-related models
of 1-safe Petri nets. Section 3 presents the polynomial reductions that show that
all discussed behavioral questions are PSPACE-complete. In Section 4 we give a
short conclusion and discuss related work.

2 Interaction Systems

2.1 Syntax and Semantics

An interaction system is a tuple Sys = (K, {Ai}i∈K , C,Comp, {Ti}i∈K), where
K is the set of components. Often, we assume K = {1, . . . , n}.

Each component i ∈ K offers a finite, nonempty set of ports (resp. actions)
Ai for cooperation with other components. The port sets Ai are pairwise dis-
joint.

Cooperation is described by connectors and complete interactions. A connec-
tor is a finite, nonempty set of actions c ⊆

⋃
i∈K Ai, subject to the

constraint that for each component i at most one action ai ∈ Ai is in c. A
connector c = {ai1 , . . . , aik

} with aij ∈ Aij describes the fact that the compo-
nents i1, . . . , ij may cooperate via these ports. A connector set C is a finite
set of connectors, s.t. every action of every component occurs in at least one
connector and no connector contains any other connector. We define the set of
interactions Int := {α | ∃c ∈ C, s.t. α ⊆ c}. In some cases we want to allow
that a connector is performed only partially, e.g. if not all components involved
in a connector are ready to perform their respective action. For this we may
designate certain interactions as complete interactions. Let Comp ⊆ Int be
a designated set of complete interactions. Comp has to be upwards-closed w.r.t.
C, i.e. ∀α ∈ Comp ∀α′ ∈ Int : ((α ⊂ α′) ⇒ α′ ∈ Comp).

The local behavior of each component i is described by Ti = (Qi, Ai, →i, q
0
i ),

where Qi is a finite set of local states, →i⊆ Qi × Ai × Qi the local transition
relation and q0

i ∈ Qi is the local starting state. We assume that the Ti’s are
non-terminating, i.e. each qi ∈ Qi has at least one outgoing edge.

We call the class of all interaction systems IS.
The global behavior TSys = (Q, C ∪Comp, →Sys, q

0) of Sys (henceforth also
referred to as the global transition system) is obtained from the behaviors of the
individual components, given by the transition systems Ti, and the interactions
in C ∪ Comp in a straightforward manner:

– Q :=
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, . . . , qn) and call them
global states.
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– the relation →Sys ⊆ Q × (C ∪ Comp) × Q, defined by
∀α ∈ (C ∪ Comp) ∀q, q′ ∈ Q q = (q1, . . . , qn) α→Sys q′ = (q′1, . . . , q

′
n) iff

∀i ∈ K (qi
ai→i q′i if α ∩ Ai = {ai} and q′i = qi otherwise).

– q0 := (q0
1 , . . . , q0

n) is the starting state for Sys.

Less formally, a transition labeled by α may take place in the global transition
system when all ports occuring in α are offered by the respective components.

Example 1. The following interaction system Count (3,4) demonstrates the ca-
pability of interaction systems to synchronize with different numbers of partici-
pants. Count(3,4) = ({1, 2, 3, 4}, {Ai}1≤i≤4, C,Comp, {Ti}1≤i≤4), where

Ai = {inci, deci} (1 ≤ i ≤ 3), A4 = {inc4, dummy4},
C = {{inc1, dummy4},{inc2, dec1},{inc3, dec2, dec1},{inc4, dec3, dec2, dec1}},

Comp= {{inc1}, {inc1, dummy4}}, and the Ti’s are given in Figure 1.

q0
1

q1
1

q2
1

inc1

dec1

T1:

inc1

q0
2

q1
2

q2
2

inc2

dec2

T2:

inc2

q0
3

q1
3

q2
3

inc3

dec3

T3:

inc3

q0
4

q1
4

q2
4

inc4

T4:

inc4dummy4

Fig. 1. The local transition systems for Count(3,4)

The behavior1 of our example system Count (3,4) is as follows: It performs a
deterministic computation starting in (q0

1 , q0
2 , q

0
3 , q

0
4). The system describes a 34-

counter that counts from 0 to 34-1=80 and then cannot perform any further
interaction.

We refer to the local transition system Ti of a component i of some previously
defined system Sys by Ti[Sys]. The same notation is used for the other elements of
the interaction system tuple. E.g. Comp[Count(3,4)] = {{inc1}, {inc1, dummy4}}.
Whenever it is obvious by the context to which system we refer (as e.g. in the next
subsection), we may simply write Q instead of Q[Sys ], etc. for ease of notation.

2.2 Properties of Interaction Systems

For the following definitions let Sys ∈ IS :

– For local states qi ∈ Qi we define the set of enabled actions ea(qi) :=
{ai ∈ Ai | ∃q′i ∈ Qi, s.t. qi

ai→i q′i}.
1 Note that dummy4 is introduced only to ensure that T4 is non-terminating.
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– For q, q′ ∈ Q we say that there is a path from q to q ′ if q = q′ or
∃k ∈ N0 ∃q1, . . . , qk ∈ Q ∃α0, . . . , αk ∈ (C ∪ Comp) s.t. q

α0→Sys q1 α1→Sys

. . .
αk−1→ Sys qk αk→Sys q′. Such a transition sequence is called a path φ from q

to q′.
– We call an infinite transition sequence q

α0→Sys . . . a run ρ from q .
– For a system Sys ∈ IS and a global state q ∈ Q we define reach(q) := {q′ ∈

Q | ∃ a path φ from q to q′}. Note that the existence of a run from q implies
(together with the finiteness of the global transition system) the existence
of a cycle that is reachable from q.

– We define the set of reachable states of Sys (with global starting state q0)
by reach(Sys) := reach(q0).

– For α ∈ Int, k ∈ K we say that k participates in α if k(α) := α ∩ Ak �= ∅.
If we have k(α) = {ak} we say that k participates in α with ak. Otherwise,
we say that k does not participate in α.

– A global state q enables an interaction α ∈ (C ∪ Comp) if ∃q′ ∈ Q:
q

α→ q′. We write q �→ if q does not enable any α ∈ (C ∪ Comp).
– A global state q enables a component k ∈ K if q enables some interaction

α in which k participates. q enables an action ak of some component
k ∈ K (resp. ak is enabled in q) if q enables an interaction α in which k
participates with ak.

– Let q = (q1, . . . , qn) ∈ Q be a global state. We say that some non-empty set
K̃ = {j1, j2, . . . , j|K̃|} ⊆ K of components is in local deadlock in q if
∀i ∈ K̃ ∀α ∈ (C ∪ Comp): (α ∩ ea(qi) �= ∅) ⇒ (∃j ∈ K̃ j(α) �⊆ ea(qj)).

– A global deadlock is a special case of a local deadlock, when K̃ = K.
– For a system Sys that has no global deadlock, we define that k ∈ K does

progress in Sys if k occurs infinitely often in every run from q0.
– For a system Sys that has no global deadlock, we define that k ∈ K is

available in Sys if k is enabled infinitely often in (states occuring in) every
run from q0.

We define in the following a list of decidability problems:
Reachability := {(Sys, q) | Sys ∈ IS and q ∈ reach(Sys)}.
LDIS := {Sys ∈ IS |∃q ∈ reach(Sys) ∃ K̃ ⊆K s.t. K̃ is in local deadlock in q}.
GDIS := {Sys ∈ IS | ∃q ∈ reach(Sys), s.t. q �→}.
Progress := {(Sys, k) | Sys ∈ (IS\GDIS) and k ∈ K[Sys] does progress in Sys}.
Availability := {(Sys, k) |Sys∈(IS \GDIS) and k ∈K[Sys] is available in Sys}.

2.3 Interaction Systems and 1-Safe Petri Nets

In this subsection we give a short discussion of interaction systems versus 1-safe
Petri-nets. As we showed in [MM08b] we can translate a 1-safe Petri net into
an interaction system in time polynomial in the size of the input such that the
property of reachability is preserved. This will be the basis for our PSPACE-
hardness results. On the other hand one can show that there is no general trans-
lation from interaction systems to 1-safe Petri nets that yields bisimilarity for
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the global transition systems and that there is no polynomial translation that
yields isomorphy even for the unlabeled versions of the global transition systems.

Still one might want to ask for further motivation why one should deal with
interaction systems instead of using Petri nets.

Our first argument concerns the fact that we want to model and investigate
component-based systems. In a component-based system it should be possible
to freely combine components in a very flexible way, substitute a component by
another one or change the glue code by which components are put together. As
we argue interaction systems are a model that satisfies these needs.

There have been attempts to use Petri nets for the analysis of component-
based systems. In [BB04, BB06] the model CompoNets based on colored Petri
nets is proposed. In this model every component offers a set of ports. Its behavior
is described by a Petri net. There is a set of syntactic rules that regulate how
components are glued together via their port sets. However there is no formalism
that allows to determine the behavior of the global system. Moreover when
components are put together the identity of a component is lost and hence
substituting one component for another one in the composed systems or asking
for the liveness of a component is not feasible. Other approaches using Petri
nets to model component-based systems can be found in [AS99, AS02, PK07,
SVvdW]. General problems with Petri nets approaches are that Petri nets lack
full compositionality and the loss of the identity of components in the composed
system which is needed for reconfiguration of systems.

Given this situation one could think of modeling components systems by inter-
action systems and then transforming the interaction system by our translation
into a 1-safe Petri net which could then be analyzed by a Petri net tools or
submitted to a model checker. When however trying to translate an interaction
system into a 1-safe Petri net one can show that there are simple interaction
systems for which no bisimilar 1-safe Petri exists. In a context of model checking
e.g. with respect to modal μ-calculus bisimilarity is however very important as
two processes satisfy the same set of formulae if and only if they are bisimilar.
Hence if we are interested in general properties as expressed by modal μ-calculus
this approach does not work.

3 The Polynomial Time Reductions

In [MM08b], we gave a polynomial translation from 1-safe Petri nets to interaction
systems, which yielded PSPACE-hardness for reachability in interaction systems.
In this section, we give four polynomial reductions f1, . . . , f4 that build a reduction
chain as depicted in Figure 2. The chain allows us to derive the PSPACE-hardness
result from reachability for all considered properties as well as PSPACE-solvability
from availability for all properties in the chain. Hence we prove all problems in
the chain to be PSPACE-complete. Although the reductions vary strongly in their
degree of difficulty they also have some basic idea in common. In each of the re-
ductions, we add a component main to the system. However, the local transition
system of main will be a different one for each reduction.
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Reachability Progress
f1

GDIS
f2

LDIS
f3

Availability
f4

PSPACE-hard ∈ PSPACE

[MM08b]

Fig. 2. The Polynomial Time Reductions fi (1 ≤ i ≤ 4)

For each reduction, we present its formal definition followed by a short ex-
planation. Explicit formal proofs have been omitted for better readability. The
proofs for the reductions are sketched in the various following subsections and
the verification of their logspace computability is left to the reader.

We will now give a short reasoning why Availability is in PSPACE :
Given an interaction system and one of its components k we want to decide

whether from every reachable global state we will, - no matter in which way we
continue our transition sequence - eventually reach a state that enables k.

Note that Availability is the question whether there exists a reachable global
state q, from which q itself is reachable by a non-empty transition sequence
q → q′ → . . . → q such that none of the global states q, q′, . . . enables k.

To solve Availability we first guess our way from the global starting state q0 to
some q as described above. It is easy to verifiy in each step in polynomial space
that we follow indeed an allowed edge in the global transition system. Next,
once we reach q, we store it and guess the cycle described above back to q. It is
possbile in polynomial space to verifiy that the cycle is non-empty, that none of
the visited states enables k and that we do indeed reach q after all.

So Availability is in NPSPACE and thus Availability is in co-NPSPACE which
equals PSPACE due to Savitch [Sav70].

3.1 Reachability Is Polynomially Reducible to Progress

Theorem 1. Reachability is polynomially reducible to Progress

Proof. Let Sys ∈ IS and q = (q1, . . . , qn) ∈ Q[Sys]. We associate with (Sys,q)
an interaction system f1(Sys, q) (which is free of global deadlocks) s.t.

((Sys,q) ∈ Reachability) ⇔ ((f1(Sys,q),main) �∈ Progress).

Formal definition of f1.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f1(Sys, q) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where

K ′ := K ∪ {main},
For i∈K:A′

i := Ai ∪ {runi},
A′

main := {dummymain, checkmain},
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For i∈K:T ′
i := (Qi, A

′
i, →′

i, q
0
i ), where

→′
i := →i ∪{(qi, runi, qi)},

T ′
main := ({q0

main}, A′
main, →′

main, q0
main), where

→′
main := {(q0

main, checkmain, q0
main), (q0

main, dummymain, q0
main)}.

C ′ := {c ∪ {checkmain}|c ∈ C}∪{{runi |1 ≤ i ≤ n}}∪{{dummymain}},
Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation. We add a component main whose local transition system consists
of a single state with two loops. Also, for each local transition system Ti we add
a loop in the state qi labeled by runi. Clearly f1(Sys, q) ∈ IS holds. The loop of
main labeled by dummymain can be performed independently (i.e. {dummymain}
is a connector) and assures that f1(Sys,q) �∈ GDIS (which is a precondition for
asking for progress). The second loop is labeled by the action checkmain, which
is added to every interaction α ∈ C ∪ Comp. Hence, the only interaction in
C ∪ Comp in which main does not participate is {run1, . . . , runn}.

This fact, together with the obvious observation that q is reachable in Sys
iff q extended by q0

main is reachable in f1(Sys, q) allows us to conclude that in
f1(Sys, q) there is a run from q in which main does not participate iff q is reach-
able in Sys.

3.2 Progress Is Polynomially Reducible to GDIS

Preliminaries. The construction applied in Example 1 in Section 2.1 can easily
be parameterized in order to build an interaction system for an mn-counter,
m, n ∈ N:
Count(m,n) = ({n + 1, . . . , 2n}, {Ai}n+1≤i≤2n, C, Comp, {Ti}n+1≤i≤2n),
where Ai = {inci, deci} for n + 1 ≤ i ≤ 2n − 1 and A2n = {inc2n, dummy2n}

C = {{incn+1, dummy2n}} ∪
⋃2n

i=n+2{c(inci)}
where c(inci) = {inci} ∪

⋃i−1
j=n+1{decj},

Comp = {{incn+1}, {incn+1, dummy2n}},
Ti = (Qi, Ai, →i, q

0
i ), where Qi = {q0

i , . . . , qm−1
i } and

→i=
{

{(qj
i , inci, q

j+1
i ) | 0 ≤ j ≤ m − 2} ∪ {(qm−1

i , deci, q
0
i )} ; n + 1 ≤ i≤2n−1

{(qj
i , inci, q

j+1
i ) | 0 ≤ j ≤ m − 2} ∪ {(qm−1

i , dummy2n, qm−1
i )} ; i = 2n

As already pointed out in Section 2.1, such a system behaves deterministically
and simply performs mn − 1 (“counting”) interactions before stopping.

Theorem 2. Progress is polynomially reducible to GDIS2.

Proof. Let Sys ∈ (IS \ GDIS) and k ∈ K[Sys]. In case k participates in every
α ∈ C ∪ Comp, k does progress3. Otherwise, we associate with (Sys,k) an inter-
action system f2(Sys, k) s.t.

((Sys,k) ∈ Progress) ⇔ (f2(Sys,k) �∈ GDIS ).

In the following, let m := max{|Qi| | i ∈ K[Sys]}.
2 Please note that an alternative proof of PSPACE-hardness of GDIS is given in

[MM08b]. Thus f2 mainly serves to establish PSPACE-completeness.
3 We have to consider this case explicitly because f2(Sys, k) �∈ IS for such an input.
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q0
main q1

main q3
main

q2
main

excludemain checkmain

excludemain countmain

checkmaincheckmain

Fig. 3. The local transition system T ′
main

Formal definition of f2.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f2(Sys, k) = {K ′, {A′

i}i∈K′ , C′,Comp’, {T ′
i}i∈K′}, where

K ′ := K ∪ {n + 1, . . . , 2n,main},
For i ∈ K: A′

i := Ai,
For i ∈ {n + 1, . . . , 2n}: A′

i := Ai[Count(m,n)],
A′

main := {checkmain, excludemain, countmain},
For i ∈ K: T ′

i := Ti,
For i ∈ {n + 1, . . . , 2n}: T ′

i := Ti[Count(m,n)],
and T ′

main is depicted in Figure 3.
Ccheck := {c ∪ {checkmain} | c ∈ C}

Compcheck := {α ∪ {checkmain} | α ∈ Comp}
Cexclude := {c ∪ {excludemain} | c ∈ C ∧ k(c) = ∅}

Compexclude := {α ∪ {excludemain} | α ∈ Comp ∧ k(α) = ∅}
Ccounter := {c ∪ {countmain} | c ∈ C[Count(m,n)]}

Compcounter := {α ∪ {countmain} | α ∈ Comp[Count(m,n)]}
(= {{incn+1, countmain}, {incn+1, dummy2n, countmain}})

C ′ := Ccheck ∪ Cexclude ∪ Ccounter

Comp ′ := Compcheck ∪ Compexclude ∪ Compcounter

Explanation. First, we observe that f2(Sys, k) ∈ IS holds. Sys is globally
deadlock-free and we want to know whether it contains a run from q0, in which
k does not participate infinitely often. This amounts to the question, whether
there is a reachable global state, that lies on a cycle that does not involve k. As
mn is an upper bound for the size of the global state space of Sys, this is equiv-
alent to asking whether it is possible to perform mn consecutive interactions in
which k does not participate.

3.3 GDIS Is Polynomially Reducible to LDIS

Theorem 3. GDIS is polynomially reducible to LDIS

Proof. Let Sys ∈ IS. We associate with Sys an interaction system f3(Sys) s.t.
(Sys ∈ GDIS) ⇔ (f3(Sys) ∈ LDIS ).
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Formal definition of f3.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K}, then
f3(Sys) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where

K ′ := K ∪ {main},
For i∈K:A′

i := Ai ∪ {dummyi},
A′

main := {dummymain, checkmain},
For i∈K:T ′

i := (Qi, A
′
i, →′

i, q
0
i ), where

→′
i := →i ∪{(qi, dummyi, qi) | qi ∈ Qi}.

T ′
main := ({q0

main, q1
main}, A′

main, →′
main, q0

main), where
→′

main := {(q0
main, checkmain, q1

main), (q1
main, dummymain, q0

main)},
C ′ := {c ∪{checkmain}|c ∈ C}∪{{dummy1, . . . ,dummyn,dummymain}},

Comp ′ := {α ∪ {checkmain} | α ∈ Comp}.

Explanation. Clearly, f3(Sys) ∈ IS. We add an additional component main
which alternatingly accompanies orignal interactions of Sys in one step and then
allows the system to perform a connector including all components in a second
step. This preserves global deadlocks but resolves local ones.

3.4 LDIS Is Polynomially Reducible to Availability

Theorem 4. LDIS is polynomially reducible to Availability

Proof. Let Sys ∈ IS. We associate with Sys an interaction system f4(Sys) (which
is free of global deadlocks) s.t.

(Sys ∈ LDIS ) ⇔ ((f4(Sys),main) �∈ Availability).

Formal definition of f4.
Let Sys = {K, {Ai}i∈K , C,Comp, {Ti}i∈K},
then f4(Sys) = {K ′, {A′

i}i∈K′ , C′,Comp′, {T ′
i}i∈K′}, where4

K ′ := K ∪ {n+1} ∪ {main}
For i∈K:A′

i := Ai ∪ {âi | ai ∈ Ai} ∪ {locki, unlocki, di, di, cleari}
A′

n+1 := {dummyn+1, lockn+1, unlockn+1}
A′

main := {lockmain, unlockmain, clearmain, progressmain}
For i∈K:T ′

i := (Q′
i, A

′
i, →′

i, q
0
i ), where

Q′
i :=

⋃
qi∈Qi

{qi, q̂i, q
D
i , q̂D

i , qD
i , q̂D

i , qclr
i }

→′
i :=

⋃
qi∈Qi

{ (qi, locki, q̂i), (q̂i, di, q
D
i ), (qD

i , unlocki, q̂
D
i ), (q̂i, di, q

D
i ),

(qD
i , unlocki, q̂

D
i ), (q̂D

i ,
⋃

ai∈ea(qi){ai, âi}, qclr
i ),

(q̂D
i , Ai ∪ {alli}, q̂D

i ), (qclr
i , cleari, q

clr
i )}

∪ →i

T ′
n+1 and T ′

main are given in Figure 5.

4 For ease of notation we use sets of actions as edge labels in the definition of →′
i as

well as in Figure 4. When we write (q, A, q′) ∈→′
i we mean (q, a, q′) ∈→′

i ∀a ∈ A.
Note that by ea(qi) we refer to the enabled actions of the local state qi in Sys (not
in f4(Sys)).
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qi

locki

locki
q̂i

locki

qD
i

qD
i

di

di

q̂D
i

q̂D
i

unlocki

unlocki
Ai ∪ {alli}

qclr
i

⋃
ai∈ea(qi)

{ai, âi}
cleari

T ′

i :

Fig. 4. The modification for a local state qi in the local transition system T ′
i

q0
main q1

main q2
main

lockmain unlockmain
q3
main

progressmain

clearmain

T ′

main :

q0
n+1

dummyn+1

T ′

n+1 :

q1
n+1 q2

n+1

dummyn+1

lockn+1 unlockn+1

Fig. 5. The local transition system T ′
main

The result of our modifications is sketched for a single state qi ∈ Qi in Figure 4.

C ′ := {{dummyn+1}, {lock1, . . . , lockn, lockn+1, lockmain}}
∪ {{unlock1, . . . ,unlockn,unlockn+1,unlockmain}}
∪ {{d1}, . . . , {dn}, {d1}, . . . , {dn}}
∪ {{all1, . . . , alln, clearmain}}
∪ {{clear1, clearmain}, . . . , {clearn, clearmain}}

∪ {{progressmain}}
∪ C ∪ Cclear, where

Cclear := {{clearmain, â} ∪ (c \ a) | a ∈ c ∈ C}
Comp ′ := Comp ∪ Compclear, where

Compclear := {{clearmain, â} ∪ (α \ a) | a ∈ α ∈ Comp}

Explanation. Clearly, f4(Sys) ∈ IS holds. Component n+1 guarantees f4(Sys)
�∈ GDIS. The idea of our reduction is as follows: In the beginning main offers
in any reachable state an action lockmain, which can participate in the lock -
interaction which includes all components. As a result, main will always be
enabled as long as this action is not performed. Now in any reachable state
q of Sys we want to be able to check whether there is a local deadlock in q.
For this purpose in any reachable state (q1, . . . , qn, q0

n+1, q
0
main), the interaction

{lock1, . . . , lockn, lockn+1, lockmain} can be performed leading to a state where
for every i ∈ K a choice between di and di takes place. Those components j
that select dj form a subset K̃ ⊆ K. If and only if K̃ is in local deadlock in
(q1, . . . , qn) in Sys, the component main will not be able to participate in any
further interaction.
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4 Conclusion and Related Work

We give a complete complexity-theoretic characterization of the most relevant be-
havioral questions in interaction systems. Similar results have been proved for
1-safe Petri nets in [CEP93]. The PSPACE-hardness results motivate other ap-
proaches to guarantee the discussed properties. One approach is to establish con-
ditions that can be tested in polynomial time and imply the desired properties
[MMM07, MMM, IU01, BHH+06]. Another approach exploits compositionality
[AB03, GGM+07]. Further, one may put restrictions on the communication struc-
ture of the interaction system [MM08a, BCD02]. The aim of all these approaches
is to derive global properties from local information as much as possible.
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2008. LNCS, vol. 4910, pp. 352–363. Springer, Heidelberg (2008)

[MMM] Majster-Cederbaum, M., Martens, M., Minnameier, C.: Liveness in Inter-
action Systems. In: Proceedings of FACS 2007. ENTCS (2007)

[MMM07] Majster-Cederbaum, M., Martens, M., Minnameier, C.: A Polynomial-
time Checkable Sufficient Condition for Deadlock-Freedom of Component-
based Systems. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W.,
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