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Abstract

Interaction systems were proposed and implemented by Sifakis et al. as a model for the design
and study of component based systems. We investigate here the property of liveness in interaction
systems where liveness of an action, a component or a set of components means that the action
(component, set of components) will repeatedly participate in every run of the global system. We
show that deciding liveness is NP-hard. Then we present a characterization of liveness. Finally,
by exploiting local information, we establish a polynomial-time criterion that guarantees liveness.
We combine the criterion with the characterization to obtain a test for liveness.
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1 Introduction

In the last decade a variety of formal approaches to the specification and
analysis of component based systems at different levels and with different
specific objectives have been proposed [1,2,9,33,3,34,38,35,7,21,5,23,10,16,15].

We investigate here the approach of interaction systems that was proposed
and discussed by Sifakis et al. in [16,17,15,40,41,39] and in more detail in [18].
The model clearly separates the issues of 1. interfaces, 2. behavior of the
components and 3. interaction between components. It has been implemented
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successfully in the Prometheus tool [13] and the BIP system [4]. BIP has been
extended to a framework for hierarchical components [19] and enriched with
contracts as defined in the SPEEDS project [6]. The model was used to
specify various applications, e.g. [4,13,14,16,40,27,31,29]. In this approach a
component offers a certain set of ports. The communication behavior of a
component is given by a labeled transition system where the labels are taken
from the port set. That is, the transition system restricts the order of calls
to the ports. Components are put together via connectors where a connector
is a finite nonempty set of ports such that no two ports stem from the same
component. The transitions which the induced global system can perform
are regulated by these connectors. One port can be contained in various
connectors of various sizes such that the cooperation between components can
be regulated freely in a simple way. In approaches using process algebra the
basic cooperation scheme is usually fixed and binary and it is cumbersome to
realize more flexibility. I/O-automata [23] can be considered as a subclass of
interaction systems. They also use some kind of transition systems to model
components but have a more restrictive scheme of cooperation. This is also
true for the interface-automata defined in [10].

Different aspects of component-based systems have been studied, for
example compatibility [37], deadlock-freedom [21,5,1], reliability prediction
[22,36,38].

In the framework of interaction systems properties such as local/global
deadlock-freedom, progress of a component, availability of ports and robust-
ness against failure of components have been discussed [18,14,24,25]. In gen-
eral it is difficult to test these properties as they involve the exploration of
the global state space. Indeed, it was shown that deciding deadlock-freedom
in interaction systems is NP-hard [32]. Recently this result was strengthened
by showing that deciding local and global deadlock-freedom is PSPACE-hard
[26]. One way to proceed in such situations is to establish criteria that en-
sure desired properties and can be tested more easily. In [25] for example
we presented a condition that ensures deadlock-freedom and can be tested in
polynomial time. In [24] we investigated criteria for robustness.

In this work we concentrate on liveness in interaction systems. A compo-
nent is considered to be live if, no matter how the global system evolves and
independently of the point of time we consider, it will repeatedly participate
in some step of the system. We show first that deciding liveness of a set of
components is NP-hard. Then we give a characterization of liveness of a set
of components in an interaction system. Moreover, we establish a criterion
that entails liveness and can be tested in polynomial time. We present a hy-
brid algorithm for testing liveness that combines the characterization and the
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criterion mentioned above.

The paper is structured as follows. Section 2 summarizes the basic def-
initions. Section 3 contains the notions of deadlock-freedom and liveness.
Liveness is investigated in Sections 4, 5 and 6 which are concerned with NP-
hardness respectively present the characterization of, the criterion for liveness,
and the hybrid algorithm.

2 Components, Connectors and Interaction Systems

We build on a model for component-based systems, called interaction systems,
that was proposed in [16,17,15,40,41]. We start with a set K of components
where we usually refer to a component as i ∈ K. For every component i ∈ K
a set Ai of ports (or actions) is specified which are used for cooperation with
other components. The cooperation is determined by so-called connectors. A
connector is a finite nonempty set of ports that contains at most one port for
every component in K. Any nonempty subset of a connector constitutes an
interaction of the system. A port may be part of various connectors which
may be of different size. Hence the cooperation can be regulated in a very
flexible way. An interaction describes a step of the system where the ports
contained in that interaction are performed together.

Definition 2.1 A component system is a pair CS =
(
K, {Ai}i∈K

)
where K

is the set of components, Ai is the port set of component i, and any two port
sets are disjoint. Ports are also referred to as actions.

The union A =
⋃

i∈K Ai of all port sets is the port set of K. A finite
nonempty subset c of A is called a connector for CS, if it contains at most one
port of each component i ∈ K, that is |c ∩ Ai| ≤ 1 for all i ∈ K. A connector
set is a set C of connectors for CS that covers all ports and contains only
maximal elements:

1.
⋃
c∈C

c = A 2. c ⊆ c′ ⇒ c = c′ for all c, c′ ∈ C.

If c is a connector, I (c) denotes the set of all nonempty subsets of c and is
called the set of interactions of c. For a set C of connectors I (C) =

⋃
c∈C

I (c)

is the set of interactions of C. We also call connectors c ∈ C the maximal
interactions. For component i and interaction α, we put i (α) = Ai ∩ α. We
say that component i participates in α, if i (α) �= ∅.

We give a simple example to illustrate these concepts. We will extend this
example throughout the text whenever we encounter new notions.
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Example 2.2 We consider a component system CS5 = (K5, {Ai}i∈K5) con-
sisting of five components, where K5 := {1, 2, 3, 4, 5} and the port sets of
the components are given by A1 := {a1}, A2 := {b1, b2}, A3 := {d1, d2},
A4 := {e1, e2}, and A5 := {f1, f2}. Additionally we fix the connector set C5 :=
{{a1, b1} , {a1, e1} , {d1, f1} , {a1, e2, f2} , {b2, e2, f2} , {b2, d2, e2} , {a1, d2, e2}} .
This component system is illustrated in Fig. 1 where the components are
shown as boxes and the ports of the components are the black boxes. The
connectors are represented by lines connecting the respective ports. Here

1 3 4 52
a1 b1

b2 d1 d2 e1 e2 f1 f2
{a1, b1}

{a1, e1}

{f1, d1}

{a1, e2, f2} {b2, e2, f2}

{b2, d2, e2}

{a1, d2, e2}

Fig. 1. The connectors for Example 2.2

for example components 1 and 2 may perform their respective first actions
together whereas 2, 4, and 5 may perform their respective second actions
together.

In the following, we always assume that K = {1, . . . , n} for some n ∈ N or
that K is countably infinite.

An interaction model for a component system CS is defined by a connector
set C together with a set Comp of interactions that are declared to be complete.
If an interaction is declared complete it can be performed independently of the
environment. Note that it is a design decision which interactions are chosen
to be complete. This choice is not restricted in any way and only depends on
the system one wishes to model.

Definition 2.3 Let C be a connector set for the component system CS and
let Comp ⊆ I (C) be a subset of interactions. The pair IM := (C, Comp)
is an interaction model for CS. The elements of Comp are called complete
interactions.

Example 2.2 continued Let IM5 := (C5, ∅) be an interaction model for
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CS5, i.e. only interactions in C5 are independent of the environment.

If for some reason the interactions {e2} and {f2, b2} for example should
be independent of other actions, we could set Comp := {{e2} , {f2, b2}}.

The notions presented so far are only concerned with the possible structure
of communication between the different components. In a further level of
description of the components the order in which a component may perform
the actions it provides is restricted. For that purpose for every component
i ∈ K a labeled transition system Ti describing the behavior of i with respect
to interaction is introduced. In the simplest case Ti is the “union” of transition
systems Tij where Tij is the protocol regulating the cooperation of component
i with component j.

Definition 2.4 Let CS =
(
K, {Ai}i∈K

)
be a component system and IM =

(C, Comp) an interaction model for CS. Let for each component i ∈ K a
transition system Ti = (Qi, Ai,→i, Q

0
i ) be given where →i⊆ Qi ×Ai ×Qi and

Q0
i ⊆ Qi is a non-empty set of initial states. We write qi

ai→i q′i instead of
(qi, ai, q

′
i) ∈→i.

The induced interaction system is given by Sys :=
(
CS, IM, {Ti}i∈K

)
where the global behavior T = (Q, C ∪ Comp,→, Q0) is obtained from the
local transition systems of the individual components in a straightforward
manner:

(i) Q :=
∏

i∈K Qi, the Cartesian product of the Qi which we consider to be
order independent. We denote states by tuples q := (q1, . . . , qj, . . .) and
call them (global) states.

(ii) Q0 :=
∏

i∈K Q0
i , the Cartesian product of the local initial states. We call

the elements of Q0 (global) initial states.

(iii) →⊆ Q × (C ∪ Comp) × Q, the transition relation for Sys defined by

∀α ∈ (C ∪ Comp) ∀q, q′ ∈ Q : q = (q1, . . . , qj, . . .)
α
→ q′ =(

q′1, . . . , q
′
j, . . .

)
⇔

∀i ∈ K : qi

i(α)
→i q′i if i participates in α and q′i = qi otherwise.

The global system can perform either complete or maximal interactions α
where α may be performed in a global state q if all partners that are involved
in α are offering their corresponding action.

Without loss of generality we always assume that every local state of
every component is reachable from some initial state in the local transition
system.

Example 2.2 continued The behavior of component i is given in Fig. 2
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for i ∈ {1, . . . , 5}. For every component i we put Q0
i = Qi. The induced

global transition system is called T (5). For example in the global state

p1
1

p2
1

p2
2

p4
1

p4
2

p3
1

p3
2

p5
1

p5
2

a1

e2d2 f2

e1d1 f1b1 b2

Fig. 2. The local behavior of the components of Example 2.2

(p1
1, p

2
1, p

3
1, p

4
1, p

5
1) a transition labeled with {d1, f1} is enabled. Our example

system Sys5 := (CS5, IM5, {Ti}i∈K5
) is now completely specified.

Remark 2.5 In what follows, we often mention Sys =
(
CS, IM, {Ti}i∈K

)
.

It is understood that CS =
(
K, {Ai}i∈K

)
, IM = (C, Comp), Ti =

(Qi, Ai,→i, Q
0
i ) for i ∈ K, and T are given as above. Usually we will dis-

play the local transition systems graphically. If not explicitly stated otherwise
the local initial states will be marked by an ingoing arrow which we will omit
for component i whenever Q0

i = Qi.

3 Liveness in Interaction Systems

Remark 3.1 From now on for all i ∈ K we will assume that Ti has the
property that every state offers at least one action.

In order to define liveness we first need a notion of (global) deadlock-
freedom. Note that in [25] we also investigated a notion of local deadlock
of a subset K ′ ⊆ K of components which describes a situation where in the
current state every component in K ′ needs the cooperation of at least one
other component in K ′ which in turn does not offer the needed ports.

Definition 3.2 Let Sys be an interaction system.

(i) Let q ∈ Q. q is reachable in Sys if there is a sequence q0 α0→ q1 α1→ . . .
αn−1
→ q

such that q0 ∈ Q0 and αi ∈ C ∪ Comp for all 0 ≤ i ≤ n − 1.

(ii) Sys is called deadlock-free if for every reachable state q there exists α ∈
C ∪ Comp and q′ ∈ Q such that q

α
→ q′.

This definition is justified by the fact that maximal as well as complete
interactions are independent of the environment. They do not have to wait for
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any other components and can be performed immediately. Started in a global
initial state a deadlock-free system may always proceed with some maximal
or complete interaction. Thus cyclic waiting involving all components cannot
occur, whereas two or more components may be engaged in a local deadlock.

Example 2.2 continued It is easy to see that Sys5 is deadlock-free. We have
Q0

i = Qi for all components which means that every global state is reachable.
Therefore one has to show that every global state offers at least one maximal
interaction which boils down to a simple case distinction.

In deadlock-free systems runs always exist, where a run is simply an infinite
thread of execution starting in a reachable state of the system.

Definition 3.3 Let Sys be a deadlock-free interaction system and let q ∈ Q
be a reachable state. A run of Sys is an infinite sequence σ : q = q0 α0→ q1 α1→
q2 . . . with ql ∈ Q and αl ∈ C ∪ Comp for all l ∈ N.

Let i ∈ K be a component and let σ be a run of Sys. If there exists l such
that i participates in αl we say that i participates in σ.

Now we can define when a set of components K ′ ⊆ K is live. Basically
this is the case if for any point of time no matter how the system behaves
some component in K ′ will eventually participate in some interaction. From
now on we identify singleton sets with their element if it is convenient to do
so.

Definition 3.4 Let Sys be a deadlock-free interaction system and let K ′ ⊆ K
be a nonempty set of components. We say that K ′ is live in Sys if for every
run σ of Sys there exists some i ∈ K ′ such that i participates in σ.

Remark 3.5 It should be noted that this notion of liveness applied to a
component i is the same as requesting that this component should participate
infinitely often in a run because runs may start in any reachable state.

This notion of liveness is different from the one introduced for Petri nets [8]
that corresponds to our notion of local progress of a component i in interaction
systems [14], which means that at any point in any run we may proceed in
such a way that component i will participate. Clearly liveness of i implies
local progress but not vice versa. A general form of liveness-properties for
a component system as a whole is defined in [7]. The questions referring to
single components that we are interested in cannot be directly formulated
and investigated in [7] because the identity of a component may be lost in
the system which means that it is not meaningful to consider liveness of a
component.

If i is live in Sys any set of components containing i is also live. The
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converse does not hold: even if K ′ is live in Sys there does not need to be
any i ∈ K ′ that is live. Also note that for K ′ = K liveness follows from
deadlock-freedom.

4 Deciding Liveness is NP-Hard

We will show that deciding liveness in interaction systems is NP-hard by
reducing the question whether a formula F in 3-KNF [11] is not satisfiable to
the question of deciding whether a certain component κ is live in a certain
deadlock-free system. Note that the reduction technique only has to be slightly
adapted in the case of I/O-automata [23] yielding an analogous result for this
formalism.

The idea of the reduction is as follows. Each clause of F will be represented
by one component as will be each literal of every clause. Other than that there
is one component κ that is live if and only if F is not satisfiable. The clause
components only have one state other than the starting state. This state
represents an evaluation of the clause to true. The literal-components have a
starting state from which two states representing the evaluation of the literal
to true respectively false. The choice of the connector set will then make sure
that all literals can only be set consistently. That means if one variable is set
to a certain value all literals with the same variable must be set appropriately.
Then it is clear that a global state where for each clause there is one literal-
component that is in its state representing true can be reached if and only if F
is satisfiable. This means all clause-components can move to their respective
true state if and only if F is satisfiable. Then the choice of the connectors will
ensure that it is only possible to start a run not involving κ in such a state.

Let F = k1 ∧ . . . ∧ kn with ki =
(
l(i,1) ∨ l(i,2) ∨ l(i,3)

)
be a proposi-

tional formula in 3-KNF, where l(i,1), l(i,2), and l(i,3) are literals. For l
a literal let var (l) denote the variable occurring in l. Let var (F ) :={
var

(
l(i,j)

)
|1 ≤ i ≤ n, 1 ≤ j ≤ 3

}
denote the set of variables occurring in F .

We construct a deadlock-free interaction system Sys(F ) with component-
set K (F ) containing a component κ such that

(F /∈ 3-SAT) ⇔ (κ is live in Sys(F ))

where 3-SAT is the set of satisfiable formulas in 3-KNF. Besides the component
κ we represent each clause ki by a component (i, 0) and each literal l(i,j) by a
component (i, j). We define

Sys (F ) :=
(
CS (F ) , IM (F ) ,

{
T(i,j)

}i=1,...,n

j=0,...,3
∪ {Tκ}

)
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where the components and their port sets are given by:

K (F ) := {(i, j) | 1 ≤ i ≤ n, 0 ≤ j ≤ 3} ∪ {κ}

A(i,0) := {truei, SATi} for 1 ≤ i ≤ n

A(i,j) :=
{
set1(i,j), set0(i,j), true(i,j), a(i,j)

}
for 1 ≤ i ≤ n, j �= 0

Aκ := {aκ}

We define the following connectors. First we have:

sat := {SAT1, . . . , SATn}

Next we define:

set1x :=
{
aκ, set1(i1,j1), . . . , set1(im,jm)

}
and

set0x :=
{
aκ, set0(i1,j1), . . . , set0(im,jm)

}

where x = var
(
l(i1,j1)

)
= . . . = var

(
l(im,jm)

)
and there is no other literal l

with x = var (l). Other than that we set:

t(i,j) :=
{
aκ, true(i,j), truei

}

ca := {aκ} ∪
{
a(i,j)|1 ≤ i ≤ n, j �= 0

}

We set

C := {sat} ∪ {ca} ∪
⋃

x∈var(F )

{set1x, set0x} ∪
⋃

1≤i≤n,j �=0

{
t(i,j)

}

and choose Comp to be the empty set.

The local transition system for κ is given in Fig. 3 (a). T(i,0) is given in
Fig. 3 (b) and T(i,j) for j �= 0 and l(i,j) a positive (resp. negative) literal is
given in Fig. 3 (c) (resp. (d)).

(b)

q0
(i,0)

qt
(i,0)

q0
(i,j)

(c)

qt
(i,j) qf

(i,j)

q0
(i,j)

(d)

qf

(i,j)
qt
(i,j)

truei

set1(i,j) set0(i,j)
set1(i,j) set0(i,j)

SATi true(i,j) true(i,j)a(i,j) a(i,j) a(i,j)

a(i,j) a(i,j)

a(i,j)

qκ

(a)

aκ

Fig. 3. The local transition systems for the components of Sys (F )

Theorem 4.1 Let Sys (F ) be defined as above.
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(i) Going from F to Sys (F ) there is no exponential blow-up in notation.

(ii) Sys (F ) is deadlock-free.

(iii) F is not satisfiable if and only if κ is live in Sys (F ).

The proof can be found in the technical report [28]. The following example
illustrates the idea behind the reduction of the above theorem. For a satisfiable
formula F it will be shown how a run in Sys (F ) can be found in which κ only
participates finitely many often. Let F = (x1 ∨x2 ∨x3)∧ (x1 ∨x2 ∨x3)∧ (x1 ∨
x2 ∨x3). F is satisfiable, namely v(F ) = 1 for v(x1) = 1, v(x2) = 1, v(x3) = 0.

Consider K (F ) = {(1, 0), (1, 1), (1, 2), (1, 3), (2, 0), . . . , (3, 3), κ} and

Sys (F ) :=
(
CS (F ) , IM (F ) ,

{
T(i,j)

}i=1,...,3

j=0,...,3
∪ {Tκ}

)
as above. The evalu-

ation v given above yields the following path starting in q0 ending in a state
where the connector sat can repeatedly be applied resulting in a run as above.

σ := q0 set1x1→ q1 set1x2→ q2 set0x3→ q4 t(1,1)
→ q5 t(2,2)

→ q5 t(3,3)
→ q6 sat

→ q6 sat
→ . . .

In the first step component (1, 1) moves to its true-state and (2, 1) and (3, 1)
move to their respective false-state representing the evaluation of x1 to 1.
Analogously the other six literal-components change their state according to
set1x2 and set0x3 . In steps four to six components (1, 0), (2, 0), and (3, 0)
move to their true-state together with (1, 1), (2, 2), respectively (3, 3). Note
that in the fifth step t(2,3) could also have been performed because q5

(2,3) = qt
(2,3)

as well. Then sat is enabled in q6.

5 Characterizing Liveness of a Set of Components

In this section we consider a (not necessarily finite) deadlock-free interaction
system. We present a characterization of all subsets K ′ ⊆ K that are live.
The benefit of this characterization is that it can be used in combination with
the sufficient criterion for liveness that we will present in Sect. 6 for cases
where the criterion alone does not imply liveness.

Definition 5.1 Let K ′ ⊆ K be a subset of components. Let excl (K ′) :=
{α ∈ C ∪ Comp|∀i ∈ K ′ : i (α) = ∅} denote the set of maximal or complete
interactions in which no component from K ′ participates.

Definition 5.2 Let Sys be a deadlock-free interaction system and let K ′ ⊆ K
be a non-empty subset of components. We define

K̄ ′ := {k ∈ K|∃α ∈ excl (K ′) : k (α) �= ∅} .
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Further we define the following labeled transition system

T̄ :=
(
Q̄, excl (K ′) ,→

)

where Q̄ :=
∏

k∈K̄ ′ Qk and →⊆ Q̄ × excl (K ′) × Q̄ is the transition relation
which is defined as follows: for any two states p̄, q̄ ∈ Q̄ and any interaction

α ∈ excl (K ′) p̄
α
→ q̄ ⇔

(
∀i ∈ K̄ ′ p̄i

i(α)
→ q̄i if i(α) �= ∅ and p̄i = q̄i otherwise

)
.

K̄ ′ contains those components that participate in at least one maximal or
complete interaction not involving any component from K ′. We clearly have
K ′ ⊆ K\K̄ ′. Q̄ can be understood as the projection of Q to K̄ ′ where we only
allow those transitions labeled with some α ∈ excl (K ′).

Theorem 5.3 Let Sys be deadlock-free and let K ′ ⊆ K. K ′ is live in Sys if
and only if T̄ does not contain any infinite path starting in a state q̄ for which
there exists q′ ∈

∏
i∈K\K̄ ′ Qi such that (q̄, q′) is reachable in Sys.

For finite systems the characterization amounts to cycle detection and
involves (partial) global state space analysis in the worst case and its usefulness
to detect liveness depends on the size of K ′. If K ′ contains very few elements
usually it will not be helpful to analyze T̄ , because its number of states may
still be exponential in the number of components. But even in this case
the characterization can be helpful when the set excl (K ′) is small and T̄
sparse. In the extreme case every maximal or complete interaction involves
some component from K ′ and excl(K ′) is empty. Then it is clear anyway that
K ′ is live.

6 Testing Liveness

In this section we present a hybrid algorithm that tests liveness of a subset
K ′ of components. The algorithm is based on a sufficient condition and the
characterization given in the previous section applied to a subsystem.

The condition that has to be checked comes down to a reachability analy-
sis in a graph where the components are the nodes. The graph is constructed
by checking certain dependencies between pairs of components that can be
checked by investigating the local transition systems only. Therefore the graph
can be constructed in time polynomial in the number of components and the
size of the local transition systems such that the criterion avoids the investi-
gation of the global state space.

In this section we always assume that Sys is a deadlock-free interaction
system with a finite set of components K and finite port sets Ai.
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Definition 6.1 Let Sys be an interaction system as above and let j ∈ K be
a component.

(i) Let A′
j ⊆ Aj be a subset of actions of j. A′

j is inevitable in Tj if only
finitely many transitions labeled with aj ∈ Aj\A

′
j can be performed in

Tj before some action from A′
j must be performed.

(ii) Let Λ ⊆ I (C) be a nonempty set of interactions and let j ∈ K be a
component. We define Λ [j] := Aj ∩

⋃
α∈Λ

α the set of ports of j that

participate in one of the interactions of Λ.

A subset of actions of a component is inevitable if on every infinite path in
the transition system of that component there are infinitely many transitions
that are labeled with some action from that set. The second part of the
definition gives a sort of a projection-operator that yields those actions of
component j that participate in one of the interactions in Λ.

In the following we define the graph G := (K, E). The set of edges is given
by the union

⋃
m≥0 Em where the sets Em ⊆ K × K are defined inductively.

Definition 6.2 Let

E0 := {(i, j) |Aj\ (excl (i) [j]) is inevitable in Tj}

and define En+1 inductively as follows:

En+1 := {(i, j) |Aj\ (excl (Reachn (i)) [j]) is inevitable in Tj}

Here Reachn (i) := {j|j is reachable from i in (K,
⋃n

m=0 Em)}.

Let E :=
⋃∞

m=0 Em and define G := (K, E).

Note that excl (i) [j] contains those ports of j that occur in some maximal
or complete interaction that does not involve i. Thus Aj\ (excl (i) [j]) is the
set of ports of j that only occur in maximal or complete interactions that also
involve i. Then the intuitive meaning of an edge (i, j) ∈ E is that j can only
participate in finitely many global steps before i also has to participate in such
a step.

Theorem 6.3 Let K ′ ⊆ K be a set of components. If all components in
K\K ′ are reachable from K ′ in G then K ′ is live in Sys.

Example 2.2 continued We have already explained why Sys5 is deadlock-
free.

Figure 4 depicts the part of G only containing the edges from E0. The
only component that is reachable from 1 is 2, but it can be seen that 3
respectively 5 can only advance finitely many times before component 4 has
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Fig. 4. (K, E0) for Example 2.2

to participate in some step. Amongst others the edge (1, 4) is added to E1 in
the next iteration step. Hence all components are reachable from component
1 in

(
K,

⋃1
m=0 Em

)
and therefore also in G. Then liveness of component 1

follows from Theorem 6.3 above.

In the following we present the algorithm that tests a given set K ′ of
components for liveness. The algorithm first applies the sufficient condition
of Theorem 6.3 to K ′ which causes polynomial cost. If the condition of the
criterion is not satisfied then the algorithm applies the characterization of
Theorem 5.3 to the set Reach of components that can be reached in G from
K ′. Note that the algorithm requires a system where each global state is
a potential starting state. It can easily be adapted to the general case. In
this case the algorithm reports “don’t know” if it detects a cycle in Q in the
second part of the algorithm as we do not know if the cycle is reachable in the
global system. A further refinement could use the techniques of [25] to find
out whether the cycle is indeed reachable from a global starting state.

Lemma 6.4 Algorithm 1 terminates and correctly tests a given set K ′ of
components for liveness. If it yields a positive answer in line 20 the total cost
is polynomial in the size of the input.

The else-block starting in line 21 causes cost in the size of Q which is
exponential in |K\Reach| in the worst case.

Proof. The correctness of the algorithm follows from Theorems 5.3 and 6.3.

Each iteration of the loop in line 5 causes cost polynomial in |K|,
|C ∪ Comp|, and

∑
j∈K |Tj |, and this iteration will be performed at most |K|2

times. Note that the test for inevitability in Tj from line 9 only causes cost
polynomial in |Tj|. It can be performed by checking whether the system T ′

j ob-
tained by deleting all edges labeled with a port from Aj\ (excl (Reach (i)) [j])
does not contain a cycle. The cost of the else-block is dominated by the cost
for the computation of Q and the search for a cycle in Q. �

Example 2.2 continued From the above explanations it is clear that
Algorithm 1 launched with Sys5 and K ′ = {1} terminates in line 20 detecting
liveness of component 1.
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Algorithm 1 LIV ENESS (Sys, K ′)

Require: Sys =
(
CS, IM, {Ti}i∈K

)
deadlock-free, Ti =

(Qi, Ai,→i, Qi) , K ′ ⊆ K
Ensure: TRUE if K ′ is live, FALSE otherwise
1: V ← K, E ← ∅, numberEdges ← 0
2: for all i ∈ K do

3: Reach (i) ← {i}
4: end for

5: repeat

6: numberEdges ← |E|
7: for all i ∈ K do

8: for all j ∈ K\ {i} do

9: if Aj\ (excl (Reach (i)) [j]) is inevitable in Tj then

10: E ← E ∪ {(i, j)}
11: end if

12: end for

13: end for

14: for all i ∈ K do

15: Reach (i) ← {j ∈ K|∃ path from i to j in (V, E)}
16: end for

17: until numberEdges = |E|
18: Reach ←

⋃
i∈K ′

Reach (i)

19: if Reach = K then

20: return TRUE {K ′ is live}
21: else

22: compute excl (Reach)
23: compute Reach
24: Q ←

∏
k∈Reach Qk

25: if � ∃ cycle in Q then

26: return TRUE {K ′ is live}
27: else

28: return FALSE {K ′ is not live}
29: end if

30: end if

In the following example the else-block will be applied and yields liveness
of component 1 if the algorithm is launched with the given system and K ′ =
{1}.

Example 6.5 Consider a system consisting of the four components 1, 2, 3,
and 4 whose behavior is given by Fig. 5 where it is understood that the port
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sets of the components are given implicitly by the transition systems. For
every component i we put Q0

i = Qi.

Fig. 5. Example illustrating Theorem 5.3

We define C = {{a1, b1} , {b2, d1} , {d2, e1} , {d1, e1} , {d2, e2}} and set
Comp = ∅.

It is easy to check that the global system is deadlock-free. We apply
Algorithm 1 to test liveness of K ′ = {1}. The algorithm finds Reach =
{1, 2} �= K. The else-block will therefore be applied to {1, 2}. Because
excl ({1, 2}) = {{d2, e1} , {d1, e1} , {d2, e2}} it is clear that Reach = {3, 4}.
There is no cycle in Q̄. Thus the algorithm affirms liveness of 1.

Had we used Theorem 5.3 directly to test liveness of component 1 we would
have got K̄ ′ = {2, 3, 4}, i.e. a larger transition system would have had to be
investigated. The combination of the criterion from Theorem 6.3 with the
characterization of Theorem 5.3 in Algorithm 1 may yield greater benefit if
applied to larger examples.

7 Conclusion and Related Work

This work treats various aspects concerning liveness. The contribution is
threefold:

(i) We showed that deciding liveness in interaction systems is NP-hard by
reducing 3-SAT to resolving the question whether a certain component
is live in an interaction system 4 .

(ii) We presented a characterization for liveness.

(iii) We established a sufficient criterion for liveness that can be tested in
polynomial time. In Algorithm 1 we combined this criterion with the
characterization mentioned above.

Liveness has been treated in other settings for component-based systems.
For example in the channel-based approach of [7] general liveness-properties

4 Work in progress suggests the conjecture that the problem is even PSPACE-hard.

M. Majster-Cederbaum et al. / Electronic Notes in Theoretical Computer Science 215 (2008) 57–74 71



have been investigated although no procedures that can be used to test live-
ness are provided. Moreover Petri-nets have been used for component-based
modeling [3]. For Petri-nets a notion of liveness has been investigated in de-
tail [8] and depending on the considered class of Petri-nets the complexity of
deciding this property is presented. This notion of liveness corresponds to our
notion of local progress [14]. Liveness has been also discussed in [12,30].

The problem of repeated reachability of a set of accepting states of a Büchi
automaton has been dealt with in depth in the context of model checking
of LTL formulae, see e.g. [20]. This problem corresponds to our condition
in Theorem 5.3. However we propose an alternative idea. We exploit local
information about the components and derive a criterion in Theorem 6.3, that
guarantees liveness without considering (parts of) the global state space in any
form. Algorithm 1 proceeds as follows: only if the criterion fails to establish
liveness we apply cycle search in the projection of the global state space to
Reach. To implement this part of the algorithm efficiently we could apply the
ideas presented in [20].

Another approach to establish properties of systems while avoiding global
state space analysis is to exploit compositionality. In [14] we defined a com-
position operator for interaction systems and presented some first conditions
under which properties of subsystems are preserved under composition.

In [14,25,24] we formulated and investigated further properties of interac-
tion systems, in particular global and local deadlock, progress, and robustness.
Currently we are enhancing the model by introducing probability. It is then
possible to make statements such as “with probability p no deadlock will
arise”.
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