
Resource Bounded Frequency Computations
with Three Errors

Ulrich Hertrampf 1 and Christoph Minnameier2

1 Abt. Theor. Informatik, University of Stuttgart, D-70569 Stuttgart, Germany
Hertrampf@informatik.uni-stuttgart.de

2 Lst. Prakt. Informatik II, University of Mannheim, D-68131 Mannheim, Germany
cmm@informatik.uni-mannheim.de

Abstract. We deal with frequency computations in polynomial time,
or more generally with resource bounded frequency computations. We
investigate the first non-trivial case of the Hinrichs-Wechsung conjecture,
which states that as soon as we have at least 2d +d inputs to be queried,
it does not become harder to get an answer with at most d errors, if we
increase the number of inputs to be queried. This conjecture can easily be
seen to hold for cases d < 3, and it seems very hard to prove in general.
We solve the problem affirmatively in the case d = 3 by a combination
of theoretical reasoning with a highly optimized computer search.

1 Introduction

The concept of frequency computation goes back to G. F. Rose [14]. The idea
was as follows: If a function f is not computable in the usual sense it may still
be possible to compute it in the following relaxed way: On n (pairwise different)
inputs x1, . . . , xn, a sequence of outputs y1, . . . , yn shall be produced, which
approximates the function in such a way that at least m of the output values
are correct, i.e. ‖{i ∈ {1, . . . , n} | yi = f(xi)}‖ ≥ m. The class of functions
computable in this way is denoted by (m, n). The same idea can also be applied
to sets instead of functions.

Essentially there are three versions of the frequency computation model: For
the recursion theoretic setting, see e.g. [4],[9],[12],[16],[3]. The resource bounded
case was investigated in [9],[5], and for the finite state model setting, see [8],[2],[1].
A lot of related work can be found in the literature (e.g. [6],[7],[11],[10],[13],[15]).

As in many other areas it turned out that the recursion theoretic world much
resembles the finite state machine world, whereas the resource bounded (for
convenience we will in this paper always speak of polynomially time bounded)
world looks completely different.

In all models it is clear that (m + 1, n + 1) ⊆ (m, n), because given an (m +
1, n + 1)-algorithm one can obtain an (m, n)-algorithm as follows: On input
x1, . . . , xn choose any element not equal to any of the xi and call it xn+1. Now
query x1, . . . , xn+1 to the given (m+1, n+1)-algorithm and ignore its (n+1)-th
output. Of the remaining n outputs no more than (n + 1) − (m + 1) = n − m
can be erroneous.

X. Hu and J. Wang (Eds.): COCOON 2008, LNCS 5092, pp. 72–81, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

Resource Bounded Frequency Computations with Three Errors 73

In [5] it was shown that in the resource bounded case for all m < 2d (where
d = n−m), the class (m+1, n+1) is a proper subset of (m, n), thus especially for
polynomial time (m+1, n+1)P � (m, n)P. Furthermore Hinrichs and Wechsung
conjectured that to the contrary, one always obtains equality for m ≥ 2d. In this
paper we will call that conjecture the Hinrichs-Wechsung conjecture.

As a hint on the general computation power of frequency computations we
should remark here, that even in the finite state machine setting the classes
(m, n) with 2m ≤ n contain non-countably many languages, i.e. especially they
contain non-r.e. sets.

For d < 3 the Hinrichs-Wechsung conjecture can easily be proven (see the full
paper for a proof), or it can be deduced from [9]:

Proposition 1. Let m > 2. Then (m, m + 1)P = (2, 3)P. Let m > 4. Then
(m, m + 2)P = (4, 6)P.

However, for d = 3, the claim would be: Let m > 8. Then (m, m+3)P = (8, 11)P.
No similar proof for this case is known. To provide a proof is the subject of this
paper. We reach this goal using computer-aided search, where the search space
is drastically reduced using theoretical arguments.

2 The Problem and Some Preliminaries

Definition 1. The class (m, n)P consists of all languages L, such that a poly-
nomial time algorithm exists, which on every set of n different inputs produces
an n-bit vector, one output bit for each of the n inputs, such that these outputs
coincide with the characteristic function of L on at least m of the inputs.

The problem we want to address is the following: Let m ≥ 9. Let L be a lan-
guage from (m, m+3)P, witnessed by the algorithm A. Assume we have a set of
m+4 different inputs x1, . . . , xm+4, and assume we have obtained m+4 results by
querying every combination of m+3 of these inputs to A. We want to show that,
no matter what these results look like, we can find an (m + 4)-bit vector, which
also makes at most 3 errors with respect to the characteristic function of L. Since
our result will be obtained from the m+4 result vectors of the queries without fur-
ther access to the inputs themselves, we can view the whole procedure as a poly-
nomial time algorithm itself, thus proving that (m, m+3)P ⊆ (m+1, m+4)P. In
other words, this will prove the Hinrichs-Wechsung conjecture for the case d = 3.

Remark 1: In fact this only proves (9, 12)P = (10, 13)P = . . . (due to the
condition m ≥ 9 above), whereas the conjecture starts with (8, 11)P = (9, 12)P.
However, starting with the class (9, 12)P is necessary to obtain the extendability
of the investigation to higher values (c.f. the discussion in the proof). But, the
case (8, 11)P = (9, 12)P can be obtained by a simple adaptation of our proof, so
we will state this case as a corollary.

Remark 2: Of course, it is well known that for any fixed value of m, the question
whether (m, m+3)P = (m+1, m+4)P can be considered to be a finite problem

74 U. Hertrampf and C. Minnameier

(by the characterization of Kummer and Stephan [9]). But, first of all the instance
size already for m = 9 is rather big, and it is not at all clear how to investigate this
case systematically. Moreover, as soon as we speak of variable m, we would have
to consider infinitely many cases, and this considerably increases the difficulty
in finding a solution.

The objects we deal with will be 13 × 13-matrices with entries in {0, 1, ∗},
asterisks being exactly in those positions, where row index plus column index
equals 14, i.e. in the diagonal from bottom left to top right. All other entries
will be 0 or 1. The rows of these matrices shall represent the results of the
queries on 12 of the 13 inputs, in the i-th column the resulting bit for input
xi. The asterisk indicates that we have no answer for that input. This means,
the first row represents the result on x1, . . . , x12, the second row the results on
x1, . . . , x11, x13, and so on.

Our proof is structured as follows: We present an algorithm, which checks
that for all matrices of the described type, one of the following two properties
will hold:

1. The matrix is not consistent, meaning: There is no possibility to obtain the
answers from the matrix for any true characteristic sequence without making
more than three errors in one row.

Take e.g. a matrix with first row (0,0,0,0,0,0,0,0,0,0,0,0,∗) and
second row (1,1,1,1,1,1,1,0,0,0,0,∗,0) . No matter what the real
characteristic sequence should be, one of the two rows has to make at least
4 errors on the first 7 inputs, because the rows differ on all seven.

Of course, these matrices will never appear in a computation of the kind
we are interested in, as long as the underlying algorithm is a correct (9, 12)P-
algorithm for the language L to be decided.

2. We will be able to produce a 13-bit output, which coincides with the real
characteristic vector on the 13 inputs in at least 10 components. Such an
output will in the sequel always be called a solution.

In fact we will not try to enumerate all such matrices and investigate them –
this would last by far too long. Instead, we consider partial matrices consisting
of a few rows (always less than 13) and check, whether we can already show
that one of the cases given will be true without knowing the other rows of the
matrix. Because of this, the second possibility (proving the ability to produce
a solution) will be split in two cases: Either we can explicitly give the solution
already, or we can prove for a given i, that xi is definitely in (or definitely not
in, resp.) the language L. Then, using at most one more row of the given matrix
(namely row 14 − i), we can obtain a solution.

Moreover our case inspection will take advantage of occuring symmetries:
Rearranging the input vector by application of a permutation results in (simul-
taneous) permutations of rows and columns, without changing the properties
investigated: An inconsistent matrix will still be inconsistent after such a per-
mutation, and a solution will be transformed to a solution of the new matrix,
if we apply the same permutation to its bits. The second symmetry operation
will be what we call bit-flipping: If we change all bits of a given column of our

Resource Bounded Frequency Computations with Three Errors 75

matrix (thus mapping 0 to 1 and 1 to 0, but leaving an asterisk unchanged), we
also can see that the properties of inconsistency or having a solution remain the
same (only in a solution, the according bit has to be flipped too). We will give
details in Section 4.

Finally, we will show (inductively) that, whenever we know that (9 + k, 12 +
k)P = (10 + k, 13 + k)P, then the same proof can be used to show that also
(10 + k, 13 + k)P = (11 + k, 14 + k)P, which will complete the proof of our
general result.

3 The Maxdist Technique

Dealing with the Hinrichs-Wechsung conjecture for quite some time, we found
that a combination of theoretical arguments and machine power has to be used
to make considerable progress in the direction of an affirmative solution. This
means, we have to find a method of dividing the problem in subproblems, which
may be easy enough to solve. Our approach does that by partitioning the set
of all matrices to be considered according to a parameter called maxdist, the
maximum distance between any two rows of the matrix. More formally:

Definition 2. The distance of two (equal-sized) vectors over {0, 1, ∗} is the
number of places, where one vector carries value 0 and the other carries value 1.

Remark 3: The distance between two rows of our matrices will not be changed,
if a permutation as described above is applied. The same holds for bit-flipping,
because we always flip all bits of a given column.

Definition 3. The value maxdist for a 13× 13-matrix of the kind considered is
the maximum distance that appears between any two rows of the matrix.

Lemma 1. If a 13 × 13-matrix of the considered kind has a maxdist value of 0
or a maxdist value greater than 4, it always satisfies one of our desired properties
(being not consistent or allowing a solution).

Proof: We first look at maxdist at least 7. Then there are two rows in our matrix,
which on 7 indices i give different answers to the question “xi ∈ L ?”. As in a
consistent matrix both should err on at most 3 inputs, this is a contradiction.
Thus the matrix has to be inconsistent.

Now, look at maxdist either 5 or 6. We pick two rows with distance maxdist,
say the i-th and the j-th row. Perform a permutation that maps i to 1 and j
to 2 and the columns in such a way that the differences between these two rows
appear in the first 5 (or 6) columns. Now, the first row is (a1, . . . , a12, ∗), the
second is (b1, . . . , b11, ∗, b13), and ai = bi for i ∈ {7, . . . , 11}, while ai �= bi for
i ∈ {1, . . . , 5}. Then, on the first 5 inputs, both rows together make exactly 5
errors with respect to the real characteristic sequence on x1, . . . , x5. It follows
that all of a7, . . . , a11 coincide with the characteristic sequence of x7, . . . , x11,
because otherwise the two given rows would make at least 7 errors in the sum,
contradicting the assumption that each makes at most 3 errors. So we can choose

76 U. Hertrampf and C. Minnameier

for example row 3, where all but x11 are queried, to obtain answers for the other
12 inputs, of which at most 3 are erroneous. With the answer a11 = b11 for x11
we have the desired solution.

Finally, let the matrix have maxdist value 0. Then all rows giving answer for
xi agree on that input (otherwise their distance would be greater than 0). We
call the according answer ai. If more than three of the ais would be wrong, we
could choose a row that answers at least four of them. Then, this row would
make 4 errors, in contradiction to our assumptions. Thus the vector a1, . . . , a13
is a solution. �
The case of maxdist 1 is solved in the same way as the cases 2, 3, and 4. How-
ever, the number of cases to be considered is rather small. Thus, it is a good
opportunity to get some insight, how our computer program has to work. That
is why we now show, how to perform this case:

Lemma 2. If a 13 × 13-matrix of the considered kind has a maxdist value of
1, then it always satisfies one of our desired properties (being not consistent or
allowing a solution).

Proof: First observe that our matrix has the following property: all pairs of
rows have either distance 0 or distance 1.

By a suitable rearrangement (applying a permutation), we make sure that
the first two rows have distance 1, and that the difference occurs in the first
component. Now, by bit-flipping we change the matrix in such a way that the
first two rows get the following form:

(0,0,0,0,0,0,0,0,0,0,0,0,∗)
(1,0,0,0,0,0,0,0,0,0,0,∗,0)

We call this partial matrix 1-2-1, which means: maxdist is 1, depth (number
of rows) is 2, and it is the first (in this case the only) matrix with these values
of maxdist and depth, which we have to consider. For the third row we get the
following possible values:

a) (0,0,0,0,0,0,0,0,0,0,∗,0,0)
b) (1,0,0,0,0,0,0,0,0,0,∗,0,0)
c) (0,0,0,0,0,0,0,0,0,0,∗,1,0)
d) (1,0,0,0,0,0,0,0,0,0,∗,0,1)

All other possible rows would contradict our assumption of maxdist 1. Now,
case b) can be transformed to case a) by permuting the first two rows (and thus
also the last two columns) and bit-flipping in the first column. The same holds
for case d) to case c). So we only need to consider two cases of partial matrices
with 3 rows. Thus we now have two matrices to consider on depth 3, namely

(0,0,0,0,0,0,0,0,0,0,0,0,∗)
(1,0,0,0,0,0,0,0,0,0,0,∗,0)
(0,0,0,0,0,0,0,0,0,0,∗,0,0)

(denoted as matrix 1-3-1), and
(0,0,0,0,0,0,0,0,0,0,0,0,∗)
(1,0,0,0,0,0,0,0,0,0,0,∗,0)
(0,0,0,0,0,0,0,0,0,0,∗,1,0)

(denoted as matrix 1-3-2).

Resource Bounded Frequency Computations with Three Errors 77

We proceed with matrix 1-3-1 and find the following three cases of possible
next rows:

a) (0,0,0,0,0,0,0,0,0,∗,0,0,0)
b) (1,0,0,0,0,0,0,0,0,∗,0,0,0)
c) (0,0,0,0,0,0,0,0,0,∗,0,1,0)

All three cases are different and will lead to matrices 1-4-1, 1-4-2, and 1-4-3.
But, from matrix 1-3-2 we only have two possible next rows:

a) (0,0,0,0,0,0,0,0,0,∗,0,0,0)
b) (0,0,0,0,0,0,0,0,0,∗,0,1,0)

Here, case a) can be transformed to matrix 1-4-3 (which was case c) above),
by swapping rows 3 and 4 (and of course also columns 11 and 10). And also case
b) can be transformed to that matrix by a somewhat more complex operation:
A circular swap of rows 1, 3, and 4, followed by a bit-flipping in column 12.

Now, we have to consider depth 4. However, as the principle should be clear
now, we invite interested readers to perform the rest of the proof themselves.

4 Our Algorithm

Now we want to complete the proof of (9, 12)P = (10, 13)P. Therefor we have to
consider the cases of maxdist value 2, 3, or 4. This now is definitely a case for
the computer. But, in order to reduce computation time, we want to reduce the
problem as far as possible.

In Section 2 we already mentioned that we will use transformations, and we
did apply this technique in Section 3 for the easy cases. We justify this by the
following discussion.

Let x1, . . . , x13 be any sequence of (pairwise different) inputs, which are to be
checked for membership in L, the given language from (9, 12)P. By 13 queries
to the given (9, 12)P-algorithm we will obtain 13 times 12 output bits for the
possible combinations of 12 out of the 13 inputs. We will know that at least 9
output bits in each answer sequence are correct. (But of course, we do not a
priori know which ones!)

Thus the output could look like:
(0,1,∗,0,1,1,0,0,1,1,0,0,1)
(0,0,1,0,1,0,0,0,1,0,0,1,∗)
(0,0,0,0,0,1,∗,0,1,0,0,0,1)
(0,0,1,0,1,1,1,∗,1,1,1,0,1)
(0,0,0,0,0,1,1,1,1,0,0,∗,1)
(0,0,1,0,1,1,1,1,1,0,∗,1,1)
(0,0,1,0,1,0,1,0,1,∗,0,1,1)
(0,0,1,0,0,0,1,0,∗,0,0,1,1)

and so on. Clearly, we can choose to write any row first, then any other row
second, and so forth. But it is obvious that there is only one way to arrange the
rows, where the asterisks appear in the diagonal from top right to bottom left:

(0,0,1,0,1,0,0,0,1,0,0,1,∗)
(0,0,0,0,0,1,1,1,1,0,0,∗,1)
(0,0,1,0,1,1,1,1,1,0,∗,1,1)

and so on. We always choose the sequence of rows in this way and call that
a normalization. Now, whenever we swap two rows, or more generally whenever

78 U. Hertrampf and C. Minnameier

we perform a permutation on the rows, we have to swap columns too, in order to
keep our normalized form. Note, that swapping of rows i and j has to be followed
by swapping of columns 14 − i and 14 − j (for 1 ≤ i < j ≤ 13), and similarly
for general permutations. However, while the ordering of the rows technically
means nothing, the ordering of the columns refers to the ordering of the queried
inputs x1, . . . , x13. Thus, one should keep in mind that such an operation always
means a rearrangement of the inputs.

Lemma 3. If the normalized matrix A can be transformed into the normalized
matrix B by a sequence of row and column permutations, then B is consistent
if and only if A is, and B allows a solution, if and only if A does.

Proof: (omitted).

Corollary 1. If the normalized partial matrix A (i.e. an upper part of a nor-
malized complete matrix) can be transformed into the normalized partial matrix
B by a sequence of row and column permutations, then B can be extended to a
consistent matrix if and only if A can, and B already allows for a solution, if
and only if A does.

We will normalize the matrices further: We want to consider only such matrices,
where the first row is (0,0,0,0,0,0,0,0,0,0,0,0,∗) , and the second row
has a 0 in the 13-th place. This can be arranged by bit-flipping of all columns,
where the first row had a 1, resp. of column 13, if the second row had a 1 there.
This operation may be done because of the following lemma:

Lemma 4. If the normalized matrix A can be transformed to B by bit-flipping
on one or more columns, then B is consistent if and only if A is, and B allows
a solution, if and only if A does.

Proof: It suffices to prove the claim for bit-flipping on one column. Let column
i be flipped. If a1, . . . , a13 is a possible truth for the original matrix A, then the
sequence obtained by flipping ai is a possible truth for the new matrix B, and
vice versa. Thus, A is consistent if and only if B is. If a solution for A is given,
then it can be changed to a solution for B by flipping the i-th bit, and also vice
versa. Thus, a solution for A exists, if and only if a solution for B exists. �
Notation: The relation between (partial) matrices, given in such a way that
A is related to B if and only if A can be transformed to B by the above intro-
duced transformation rules, is an equivalence relation. We will often call matrices
related in this way to be symmetric to each other.

By the above normalization rules we will always be able to transform a given
matrix to the following form:

– The asterisk of row i is in column 14 − i.
– The first row consists only of 0 entries (and the asterisk in column 13).
– The second row has a 0 in column 13.
– The distance between rows 1 and 2 is exactly the value of maxdist.

Resource Bounded Frequency Computations with Three Errors 79

– In each row, the following holds: If columns j and j + 1 are exactly equal in
all rows above the current one, then in the current row we may not have a 0
in column j and a 1 in column j + 1. (We call that the monotonicity rule.)

– The monotonicity rule, together with the rule about the distance between
rows 1 and 2 implies for row 2 that there are 1-entries exactly in columns 1
to maxdist, and all other entries in row 2 are 0 (except for the asterisk in
column 12).

The discussion proved that in order to show that all possible (that is consistent)
matrices have solutions, it is sufficient to only consider matrices in the described
form.

Now we are ready to introduce our algorithm for the cases of maxdist values
2, 3, and 4. A pseudo-code formulation of the algorithm, as well as an exe-file
with our implementation (and the source code in ADA) can be found on the web
page

http://134.155.88.3/main/chair de/03/cmm download/index de.html

Essentially, the algorithm works exactly as the explicit procedure for the case of
maxdist value 1 in Lemma 2. For a given value of maxdist (2, 3, or 4) it starts
with the first two rows, which are uniquely determined by the above described
form and the value of maxdist. We call that stage “depth 2” and we initialize a
list of matrices to be considered with that one matrix of two rows. Moreover we
compute the set of possible truths, i.e. the set of all 13-bit vectors which have
distance at most 3 to both rows of that matrix, and we attach that set to the
matrix.

Now for a given depth (starting from depth 2), we take all matrices from the
list, compute all candidates for next rows, which have a distance less than or
equal to maxdist to all rows already in the matrix. For each of these candidate
rows, we check, whether the row would obey the monotonicity rule. If it does, it
is output as a new row to be considered.

The algorithm has to cancel out all so far possible truths, which contradict
the new row (by having distance greater than 3 to it), and then examine the
remaining set of possible truths, in order to find out, whether one of the following
cases happens:

(a) The (partial) matrix becomes inconsistent (set of possible truths is empty),
or

(b) All possible truths have the same value in one position (this will lead to a
solution), or

(c) We can find a 13-bit vector, which has distance less than or equal to 3 for
all possible truths, or

(d) None of these cases, but in our list for the next depth, we can already find
a matrix which can be obtained from the current one by row permutation
and bit-flipping operations, or

(e) None of the other cases, so we have to append the new matrix to the list
for the next depth.

80 U. Hertrampf and C. Minnameier

The most complex test to be performed here is for case d). We could try to
apply all possible transformations in order to get any of the matrices already in
the list. However, we do it the other way round: We feed all pairs, built of the
current matrix and one matrix of the list, into a symmetry detecting procedure
called the matcher, which uses additional structural properties of the matrices
to speed up detection of nonsymmetry in many cases: The mainly used prop-
erty is the vector of numbers of pairs of a given distance. See the full paper for
details.

Now, if one of cases a), b), c) or d) happens, the algorithm produces an out-
put telling exactly which case happened, and moreover in case b) the special
position and the value that all truths have in that position, in case c) the so-
lution, and in case d) the row permutation that leads to the other matrix, and
the number of that matrix in our list (note, that the according column permu-
tation and the bit-flipping operations are implicitly given by our normalization
conditions). When all partial matrices of a given depth are done, the algorithm
starts to examine the list for the next depth. If that is empty, the algorithm
terminates.

The algorithm can be performed on maxdist values 2, 3 and 4, and it runs
very fast. The output can also be found on the above named web page. By
inspection of the output one can see that in all three cases the maximum depth
to be considered is depth 8. At the maximum depth the algorithm terminates in
each case, meaning there are no more matrices to consider. Thus we obtain:

Theorem 1. (9, 12)P = (10, 13)P.

One can observe that all (partial) matrices occuring in the execution of the
algorithm have at least one column of all zeroes. If we omit one such column
in every considered matrix, the whole procedure does exactly the same, only it
now works on only 12 inputs. Thus, as a corollary we get:

Corollary 2. (8, 11)P = (9, 12)P.

5 Extendability

As we observed at the end of Section 4, every matrix used in the execution of
our algorithm has at least one column of all zeroes. To be more exact: In cases
maxdist value 3 or 4, we always have at least one such column, and in case
maxdist value 2 (and maxdist value 1 as well, as investigated in Lemma 2), we
always have at least two such columns. These zero columns will be the key in the
proof, that the result of Theorem 1 can be extended to all cases with more inputs
and up to three errors. Together with Corollary 2 this will complete the solution
of the d = 3 instance of the Hinrichs-Wechsung conjecture. Unfortunately, the
rigorous space restrictions in these lecture notes only allow us to state the final
result. We refer the reader to the full paper for details.

Theorem 2. For all k > 0, we have (8 + k, 11 + k)P = (8, 11)P.

Resource Bounded Frequency Computations with Three Errors 81

6 Further Work

One obvious next step would be an adaptation of the proof to case d = 4, which
might be done by a simple extension of our algorithm. Or, certainly more inter-
esting, a (theoretical) proof should be given for the following conjecture:

Conjecture: For any m < n we have:

(m, n)P = (m + 1, n + 1)P =⇒ (m + 1, n + 1)P = (m + 2, n + 2)P

References

1. Austinat, H., Diekert, V., Hertrampf, U.: A Structural Property of Regular Fre-
quency Computations. Theor. Comp. Sc. 292(1), 33–43 (2003)

2. Austinat, H., Diekert, V., Hertrampf, U., Petersen, H.: Regular Frequency Com-
putations. In: RIMS Symposium on Algebraic Systems, Formal Languages and
Computation, Kyoto, Japan, pp. 35–42 (2000)

3. Beigel, R., Gasarch, W.I., Kinber, E.B.: Frequency Computation and Bounded
Queries. Theor. Comp. Sc. 163(1–2), 177–192 (1996)

4. Degtev, A.N.: On (m, n)-Computable Sets. Algebraic Systems, 88–99 (1981) (in
Russian)

5. Hinrichs, M., Wechsung, G.: Time Bounded Frequency Computations. Information
and Computation 139(2), 234–257 (1997)

6. Kinber, E.B.: Frequency Calculations of General Recursive Predicates and Fre-
quency Enumeration of Sets. Soviet Mathematics Doklady 13, 873–876 (1972)

7. Kinber, E.B.: On Frequency-Enumerable Sets. Algebra i Logika 13, 398–419 (1974)
(in Russian); English translation in Algebra and Logic 13, 226–237 (1974)

8. Kinber, E.B.: Frequency Computations in Finite Automata. Kibernetika 2, 7–15
(1976) (in Russian); English translation in Cybernetics 12, 179–187 (1976)

9. Kummer, M., Stephan, F.: The Power of Frequency Computation. In: Reichel, H.
(ed.) FCT 1995. LNCS, vol. 969, pp. 323–332. Springer, Heidelberg (1995)

10. Kummer, M., Stephan, F.: Recursion Theoretic Properties of Frequency Compu-
tation and Bounded Queries. Information and Computation 120, 59–77 (1995)

11. Kummer, M.: A Proof of Beigel’s Cardinality Conjecture. J. of Symbolic
Logic 57(2), 677–681 (1992)

12. McNaughton, R.: The Theory of Automata, a Survey. Advances in Computers 2,
379–421 (1961)

13. McNicholl, T.: The Inclusion Problem for Generalized Frequency Classes. PhD
thesis, George Washington University, Washington (1995)

14. Rose, G.F.: An Extended Notion of Computability, Abstracts Int. Congress for
Logic, Methodology, and Philosophy of Science. Stanford, California, p. 14 (1960)

15. Tantau, T.: Towards a Cardinality Theorem for Finite Automata. In: Diks, K.,
Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 625–636. Springer, Heidelberg
(2002)

16. Trakhtenbrot, B.A.: On the Frequency Computation of Functions. Algebra i
Logika 2, 25–32 (1963) (in Russian)

	Resource Bounded Frequency Computations with Three Errors
	Introduction
	The Problem and Some Preliminaries
	The Maxdist Technique
	Our Algorithm
	Extendability
	Further Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

