
A Polynomial-Time Checkable Sufficient
Condition for Deadlock-Freedom
of Component-Based Systems

Mila Majster-Cederbaum1, Moritz Martens2, and Christoph Minnameier3

Institut für Informatik, Universität Mannheim, Germany
mcb@informatik.uni-mannheim.de, mmartens@informatik.uni-mannheim.de,

cmm@informatik.uni-mannheim.de

Abstract. Interaction systems are a formal model for component-based
systems. Combining components via connectors to form more complex
systems may give rise to deadlock situations. Deciding the existence of
deadlocks is NP-hard as it involves global state analysis. We present
here a parametrized polynomial-time algorithm that is able to confirm
deadlock-freedom for a certain class of interaction systems. The discus-
sion includes characteristic examples and displays the role of the param-
eter of the algorithm.

1 Introduction

We consider a setting where components are combined via connectors to form
more complex systems, see, e.g. [4], [6] and [7]. Each individual component i
offers ports ai, bi, .. ∈ Ai for cooperation with other components. Each port
in Ai represents an action of component i. The behavior of a component is
represented via a finite labeled transition system with starting state, where in
each state there is at least one action available. Components are glued together
via connectors, where each connector connects certain ports. In the global system
obtained by gluing components (local) deadlocks may arise where a group of
components is engaged in a cyclic waiting and will thus no longer participate
in the progress of the global system (cf. [12]). It can be shown that testing
the existence of local deadlocks is NP-hard [3]. We present here a parametrized
polynomial-time algorithm that can confirm local deadlock-freedom for a certain
class of systems. The algorithm is based on two ideas: first, a necessary condition
for the existence of local deadlocks. If a component j is involved in causing
a local deadlock in the reachable global state q then there must be two other
components satisfying certain properties referring to their respective enabled
actions in the state q. This is similar to an idea of [2] presented there for systems
communicating via shared variables. The second idea is to consider an over-
approximation of the set of reachable states: we consider the states that can
be reached by projecting the state space to any subsystem of size d, where
d is a parameter of the algorithm (and the degree of the polynomial describing
the cost of the algorithm). If local deadlock-freedom cannot be verified, the

Jan van Leeuwen et al. (Eds.): SOFSEM 2007, LNCS 4362, pp. 888–899, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 889

algorithm reports so, in which case one has to apply other methods to clarify
the situation further, as e.g model-checking [9] or exploiting compositionality.
We present a nontrivial example where our algorithm detects deadlock-freedom
and where global state space analysis would indeed take exponential time. We
discuss the role of the parameter d. In particular we present an example where
increasing the value of d yields the desired result. The paper is organized as
follows. Section 2 contains the basic definitions. Section 3 gives the necessary
condition for the existence of local deadlocks and presents the algorithm and
its analysis. Section 4 presents two examples. Section 5 refers to related work.
Section 6 contains a conclusion and an outlook to future work.

2 Components, Interactions and Interaction Systems

2.1 The Model

We consider here interaction systems, a model for component-based systems that
was proposed and discussed in detail in [4], [6] and [5]. An interaction system
is a tuple Sys = (K, {Ai}i∈K , C, {Ti}i∈K)1, where K is the set of components.
W.l.o.g. we assume K = {1, ..., n}. Each component i ∈ K offers a finite set of
ports or actions Ai for cooperation with other components. The port sets Ai

are pairwise disjoint. Cooperation is described by connectors. A connector is
a set of actions c ⊆

⋃
i∈K Ai, where for each component i at most one action

ai ∈ Ai is in c. A connector set C is a set of connectors, such that every action
of every component occurs in at least one connector of C and connectors are
maximal w.r.t. set inclusion.

The local behavior of each component i is described by Ti = (Qi, Ai, →i, q
0
i).

Qi is the finite set of local states, the sets Qi are pairwise disjoint. →i⊆ Qi ×
Ai × Qi is the local transition relation and q0

i ∈ Qi is the local starting state.
We denote the maximal size m = maxi∈K(max(| →i |, |Qi|)) of a local transition
system Ti by m. Given a connector c ∈ C and a component i ∈ K we denote by
i(c) := Ai ∩ c the participation of i in c. We identify a singleton set with its
element.

For qi ∈ Qi we define the set of enabled actions ea(qi) := {ai ∈ Ai | ∃q′i ∈
Qi, s.t. qi

ai→ q′i}. We assume that the Ti’s are non-terminating, i.e. ∀i ∈ K ∀qi ∈
Qi ea(qi) �= ∅.

The global behavior TSys = (Q, C, →, q0) of Sys (henceforth called global
transition system) is obtained from the behaviors of the individual compo-
nents, given by the transition systems Ti and the connectors C in a straightfor-
ward manner:

– Q =
∏

i∈K Qi, the Cartesian product of the Qi, which we consider to be
order independent. We denote states by tuples (q1, ..., qn) and call them
global states.

1 The model in [4] is more general and distinguishes between connectors and complete
interactions, but for the purpose of deadlock detection this distinction is irrelevant
and we omit it for ease of notation.

890 M. Majster-Cederbaum, M. Martens, and C. Minnameier

– the relation →⊆ Q × C × Q, defined by
∀c ∈ C ∀q, q′ ∈ Q q = (q1, ..., qn) c→ q′ = (q′1, ..., q

′
n) iff

∀i ∈ K (qi
i(c)→i q′i if i(c) �= ∅ and q′i = qi otherwise).

– q0 = (q0
1 , ..., q0

n) is the starting state for Sys.

Let q = (q1, ..., qn) ∈ Q be a global state. We say that some non-empty set
D = {j1, j2, ..., j|D|} ⊆ K of components is in deadlock in q if ∀i ∈ D ∀c ∈ C:
c ∩ ea(qi) �= ∅ ⇒ ∃j ∈ D j(c) �⊆ ea(qj).

A system has a local deadlock in some global state q if there is D ⊆ K,
that is in deadlock in q. If D = K, the system is globally deadlocked. Hence
a global deadlock is a special case of a local deadlock and we will henceforth
simply speak of formation of deadlocks instead of local deadlocks. A system is
deadlock-free, if there is no reachable state q and D ⊆ K, such that D is in
deadlock in q.

Example
Sys1 = {{1, 2, 3, 4}, {Ai}1≤i≤4, C, {Ti}1≤i≤4}, where the Ti’s and Ai’s can be
seen from Figure 1, and C = {{a1, a3}, {b1, b2}, {c1, c3}, {c2, c3}, {d1, d4}, {e3,
e4}, {f4}}. The System starts in (q1, q2, q3, q4). If it chooses to perform the
connector {d1, d4} it reaches the global state (q′1, q2, q3, q

′
4). In this state, D =

{1, 2, 3, 4}=K is in (global) deadlock.

Fig. 1. The local transition systems for Sys1

2.2 Some Technical Notions

Let K1 ⊆ K2 ⊆ K and U ⊆
∏

i∈K2
Qi. Then U ↓ K1 consists of the projection

of all states in U to the components in K1.
Let K ′ ⊆ K. The transition system TK′ induced by K ′ is given by (QK′ , CK′ ,

→K′ , q0
K′), where QK′ :=

∏
i∈K′ Qi, CK′ := {cK′ = c∩(

⋃
i∈K′ Ai) | c ∈ C}\{∅},

→K′ is defined analogously to → and q0
K′ := q0 ↓ K ′.

That means, for the definition of →K′ , we restrict connectors to actions of
components in K ′. This amounts to presuming (for reachability) that actions of
components in K \ K ′ are always available. This fact is directly associated to
Remark 2.

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 891

Given a set K ′ ⊆ K and the induced transition system TK′ we denote by
reach-by-j(TK′) ⊆ QK′ the set of states that can be reached in TK′ (starting
in q0

K′) in a way such that the last state transition affected component j. We first
give a constructive (recursive) auxiliary definition of reach(TK′) ⊆ (QK′ × K ′)
as follows:

- (q0
K′

l→K′ q′) ⇒ (∀j ∈ K ′, s.t. q′j �= q0
K′j : (q′, j) ∈ reach(TK′))

- ((q, i) ∈ reach(TK′)∧q
l→K′ q′) ⇒ (∀j ∈ K ′, s.t. q′j �= qj : (q′, j) ∈ reach(TK′))

For j ∈ K ′ we define reach-by-j(TK′) := {q ∈ QK′ | (q, j) ∈ reach(TK′)}.

Remark 1: For TK′ , K ′ ⊆ K with |K ′| = d, a reachability analysis can be
performed in O(md), which is an upper bound for the number of states in TK′ .
We may store reach(TK′) (i.e. the reachabilties plus the information about the
components that may change their states in a preceding interaction) in a tabu-
lar of size O(md · n) which is also the required computation time. If reach(TK′)
is stored in a 2-dimensional array (QK′ , K ′), reach-by-j(TK′) does not require
any additional computation. It can directly be seen from the array’s j-th column.

Remark 2: Let Sys = (K, {Ai}i∈K , C, {Ti}i∈K)
q ∈ reach-by-j(TSys) ⇒ ∀K ′ ⊆ K, j ∈ K ′ : (q ↓ K ′) ∈ reach-by-j(TK′).
If a state q is reachable in the global transition system in a way such that the
last state transition affected component j, then for every K ′ ⊆ K that includes
j, the state q ↓ K ′ is reachable in the corresponding subsystem in a way such
that the last state transition affected component j.

We define for Sys = (K, {Ai}i∈K , C, {Ti}i∈K), i, j, k ∈ K and 1 ≤ d ≤ n the set
reachd-by-j(i, j, k) :=

⋂
K′⊆K,s.t.i,j,k∈K′∧|K′|=d (reach-by-j(TK′) ↓ {i, j, k}).

Remark 3: ∀1 ≤ d ≤ n, (reach-by-j(TSys) ↓ {i, j, k}) ⊆ reachd-by−j(i, j, k)
The projection of a reachable (by j) global state to {i, j, k} is reachable (by j)
in every subsystem of size d that includes i, j, k.

Example: We consider a system Sys3 = (K, {Ai}i∈K , C, {Ti}i∈K), where K =
{1, ..., 5}, A1 = {a1}, A2 = {a2, b2, c2}, A3 = {b3, d3, e3}, A4 = {c4, d4} and
A5 = {e5}. C = {{a1, a2}, {b2, b3}, {c2, c4}, {d3, d4}, {e3, e5}}. The local transi-
tion systems are given in Figure 4 at the end of section 4. Consider the following
exemplary reachabilities, where “-” stands for an arbitrary state of the corre-
sponding component:

(q1, q′2, q3, q′4, q5) ∈ reach-by-2 (TSys3); ∀j ∈ K : (−, q′2, q′3, −, −) �∈
reach-by-j(TSys3); (q1, q′2, q′3) ∈ reach3-by-2 (1, 2, 3), whereas (q1, q′2, q′3) �∈
reach4-by-2(1, 2, 3) even though (q1, q

′
2, q

′
3, q5) ∈ reach-by-2(T{1,2,3,5}), because

(q1, q
′
2, q

′
3, −) �∈ reach-by-2(T{1,2,3,4}). proper subset of D is in deadlock in q then

we speak of a minimal deadlock.

892 M. Majster-Cederbaum, M. Martens, and C. Minnameier

3 The Parametrized Polynomial Time Deadlock-Freeness
Verification Algorithm

In this section we investigate the formation of deadlock situations in a system
Sys. We assume that there is no deadlock2 in the global starting state q0. We
derive a necessary condition for deadlocks that can be checked within subsystems
and thus can be used to avoid exponential time complexity. Then, we present
the parametrized verification algorithm in pseudocode and a short complexity
analysis.

Lemma 1: Let q be a reachable global state for Sys and let D ⊆ K be in
deadlock in q, such that no proper subset of D is in deadlock in q. W.l.o.g. we
assume that there is a transition sequence q0 c0→ q1 c1→ ...

cr−1→ qr cr→ q, s.t. no
predecessor-state of q contains a deadlock. Then ∃j ∈ D, such that qj �= qr

j and
the following conditions hold:

1) ∀c ∈ C, s.t. c ∩ ea(qj) �= ∅ ∃k ∈ D such that k(c) �⊆ ea(qk)
(Every connector, j participates in, is blocked by some component k in D).
2) ∃i ∈ D ∃c ∈ C, s.t. c ∩ ea(qi) �= ∅ ∧ j(c) �⊆ ea(qj)
(In return, j blocks at least one enabled action of a component i ∈ D.)
Proof: See Appendix B.

We weaken condition 1 by merely demanding the existence of a c ∈ C and we
apply Remark 3 to formulate the following implication of the necessary condi-
tion in Lemma 1 that can be observed in subsystems:

Corollary 1: Under the same assumptions as in Lemma 1, we may conclude:

∃i, j, k ∈ K ∃q ∈ Q{i,j,k} (namely the i and j from above, one of the k’s in
condition 1 and the q from above projected to {i, j, k}), s.t. ∀ 1 ≤ d ≤ n:
q ∈ reachd-by-j(i, j, k) and
1) ∃c ∈ C{i,j,k}, s.t. c ∩ ea(qj) �= ∅ ∧ k(c) �⊆ ea(qk)
(At least one interaction that j could participate in is blocked by k.)
2) ∃c ∈ C{i,j,k}, s.t. c ∩ ea(qi) �= ∅ ∧ j(c) �⊆ ea(qj)
(In return, j blocks at least one enabled action of a component i, as above.)

Given a subsystem T{i,j,k} and local states qi, qj we say “i (in qi) is blocked by j
(in qj)” or “j (in qj) blocks i (in qi)”3 iff ∃c ∈ C{i,j,k}, s.t. c∩ ea(qi) �= ∅∧ j(c) �⊆
ea(qj).

Given a subsystem T{i,j,k} and a state (qi, qj , qk), we say that (qi, qj , qk) is
a blocking chain if i in qi is blocked by j in qj and j in qj is blocked by k in qk.

Hence (qi, qj , qk) is a blocking chain if conditions 1 and 2 from Corollary 1
hold.

2 This is a natural assumption w.r.t. reasonable system design. Anyway, a check of
this proposition would be possible within polynomial time.

3 Actually, we should say “might be blocked” and “might block”. However, as we check
a necessary condition here and for ease of notation we use the shorter version.

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 893

The algorithm we present here, tries to confirm the negation of the necessary
condition in the corollary and outputs “Sys is deadlock-free” if and only if it is
successful in doing so. Otherwise, it outputs “Sys might contain deadlocks”.

1: PROCEDURE deadlock-freedom-verifier(Sys, d)
2: for all i, j, k ∈ K do
3: compute reachd-by-j(i, j, k)
4: end for
5: for all i, j, k ∈ K do
6: for all (qi, qj , qk) ∈ reachd-by-j(i, j, k) do
7: if (qi, qj , qk) is a blocking chain then
8: write(“Sys might contain deadlocks”);
9: break;

10: end if
11: end for
12: end for
13: write(“Sys is deadlock-free”)
14: END deadlock-freedom-verifier

The computation of reachd-by-j(i, j, k) for a subsystem {i, j, k} (line 3) can be
performed in O(md · n) · (nd−3), as mentioned in Remark 1. The loop (2-4) is
performed n3 times, so we have an overall complexity of O(md · nd+1) for the
reachability analyses.

The check, whether a state (qi, qj , qk) is a blocking chain (line 7) can be
performed in O(|C| ·m), as we compare sets (of size ≤ 3) in C{i,j,k} elementwise
with enabled actions in local transition systems.

The loop (6-11) is performed up to md times and the surrounding loop (5-12)
is performed n3 times. So 5-12 takes O(md+2 · n3 · |C|) and this yields an overall
complexity of O(md+2 · nd+1 · |C|).

4 Applicability

In the following, we present two example systems and apply our algorithm. We
verify deadlock-freedom for a complex parametrized example system Sys2(y, x)
and discuss how and why our algorithm is able to handle the example, even for
arbitrarily large x, y with d = 3, i.e. observing subsystems of size 3 only. Then,
we give an example system Sys3 that can be proven deadlock-free with d = 4
but not with d = 3.

Trilateration is a method to determine the relative positions of an object on a
surface, using triangulation of the surface. To accurately and uniquely determine
the relative location of an object on a surface using trilateration, 3 reference
points (in this case the vertices of the triangle surrounding the object) are needed.

Let us imagine a system of n transmitting stations that divide a surface into
triangles, using an odd number y of rows and an odd number x of columns.
(See Figure 2.) Three transmitting stations that form a triangle can cooperate
in order to determine the position of an object within the triangle.

894 M. Majster-Cederbaum, M. Martens, and C. Minnameier

Fig. 2. An area divided into triangles �(a,b) by transmitting stations (u, v)

That means, every transmitting station (u, v) can participate in a job (i.e.
a trilateration) in one of its (up to) six adjacent triangle-areas at a time or
participate in a maintenance together with the other (�x/2� or �x/2� − 1) sta-
tions on the same horizontal line. Each transmitting station is a component
(u, v) in our model and offers actions of type start, perform and end a co-
operation in a triangle (a, b), which are abbreviated by s-c(u,v,a,b),
p-c(u,v,a,b) and e-c(u,v,a,b), respectively. Also, each component (u, v) offers ac-
tions to start, perform and end a maintenance, which are abbreviated
by s-maint(u,v), p-maint(u,v) and e-maint(u,v), respectively. The system is de-
scribed by Sys2(y, x) = (K, {A(u,v)}(u,v)∈K , C, {T(u,v)}(u,v)∈K), where:

K = {(2u + 1, 2v + 1) | 0 ≤ u ≤ y−1
2 , 0 ≤ v ≤ x−1

2 }
∪ {(2u, 2v) | 1 ≤ u ≤ y−1

2 , 1 ≤ v ≤ x−1
2 }

A(u,v) = {s-c(u, v, a, b),p-c(u, v, a, b),e-c(u, v, a, b)|�(a,b) is a triangle adjacent
to (u, v)} ∪ {s-maint(u, v),p-maint(u, v),e-maint(u, v)}

C : For each op ∈ {s-c,p-c,e-c} we include the connectors
{op(u1, v1, a, b), op(u2, v2, a, b), op(u3, v3, a, b)}, where
(u1, v1), (u2, v2), (u3, v3) are vertices of �(a,b).

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 895

Also, for op ∈ {s-maint,p-maint,e-maint}, we include the connectors
{op(u1, 1), op(u1, 3), ..., op(u1, x)}, and
{op(u2, 2), op(u2, 4), ..., op(u2, x − 1)} where
u1 resp. u2 ranges over the odd resp. even numbers in {1, ..., y}.

The T(u,v)’s are depicted in Figure 3. Note that the transmitting stations at
the margin of the area do not have 6 but less triangles to participate in, so
Figure 3 is exemplary only.

Fig. 3. The local transition system for some (non-marginal) transmitting station (u, v)

In the following, we prove that the algorithm is indeed able to verify (for arbi-
trarily large x, y) that Sys2(y, x) is deadlock-free, by showing that no subsystem
T{i,j,k} of components i, j, k ∈ K will ever reach a state (qi, qj , qk), such that
(qi, qj , qk) is a blocking-chain:

Remark 4: Let a component l1 ∈ {i, j, k} be in its maintl1 - (or in its pl1(a,b)-)
state. In this case, l1 offers its p-maint and e-maint (or p-c(a,b) and e-c(a,b))
actions. For l2 ∈ {i, j, k} to block l1, l2 must possess an action that occurs in
a connector together with one of the actions offered by l1, i.e. l2 has to share
a line with l1 (or be one of the vertices of �(a,b)). However, as l2 is observed
in T{i,j,k} it must have gone to its maintl2 - (or to its pl2(a, b)-) state conjointly
with l1 and thus offer the demanded action.

Now assume that there is a state (qi, qj , qk), that is a blocking-chain:

Due to Remark 4, we may assume qi = idlei. But then, for qj to block qi, we have
qj �= idlej. But by Remark 4, we know that j in qj �= idlej cannot be blocked
by k in any qk.

We showed that our algorithm can verify deadlock-freedom for the trilatera-
tion example in polynomial time. Note, that the example is a non-trivial system
that could easily be modeled to contain deadlocks, e.g. (3, 3),(2, 4),(3, 5) could
wait for each other when (3, 3) is in a state where it wants do a job in �(2,3)
while (2, 4) wants to do a job in �(2,5) and (3, 5) wants to do a job in �(3,4). So

896 M. Majster-Cederbaum, M. Martens, and C. Minnameier

first, it is not obvious by specification that the implementation will be deadlock-
free. Second, the number of reachable global states of the system is exponential
(in n)4. Hence any algorithm that checks some condition for every global state
would need time exponential in n. Third, the system scale is variable and it may
contain arbitrarily large connectors (the maintenance connectors’ size is linear
in x). Nevertheless to verify deadlock-freedom it suffices to choose the parameter
d = 3, i.e. to observe subsystems of size 3 only.

We are now going to investigate an example of a deadlock-free system Sys3,
for which our algorithm is not able to confirm deadlock-freedom when we ob-
serve subsystems of size 3. However, when observing subsystems of size 4, the
algorithm yields the desired result.

Consider Sys3, introduced at the end of section 2, for which the Ti’s are given
in Figure 4.

Fig. 4. The local transition systems Ti for Sys3

When observing the subsystem T{1,2,3}, we find (q1, q
′
2, q

′
3) ∈ reach3-by-2

(1, 2, 3) where 1 is blocked by 2, which is, in turn, blocked by 3. However,
no corresponding global state is accessible in the global system because the
communication with component 4 prevents 2 and 3 from reaching q′2 and q′3
simultaneously.

The problem, of course, is the lack of observation of component 4. If we apply
the algorithm with d = 4, we are indeed able to verify deadlock-freedom: The
relation R = {(q1, q

′
2), (q2, q

′
3), (q2, q

′′
4), (q′2, q

′′
4), (q′2, q

′
3), (q3, q

′
4), (q

′
3, q

′
4), (q5, q3)}

includes all pairs (qi, qj), where i in qi is blocked by j in qj . As a result, the set of
possible blocking chains is BC = {(q1, q

′
2, q

′′
4), (q1, q

′
2, q

′
3), (q2, q

′
3, q

′
4), (q

′
2, q

′
3, q

′
4),

(q5, q3, q
′
4)}. As stated at the end of section 2, (q1, q

′
2, q

′
3) �∈ reach4-by-2(1, 2, 3)

and corresponding propositions hold for all other states in BC. The example also
displays that it can be crucial to check whether a state is reachable by a state
transition that affects a certain component:

4 Proof: See Appendix A.

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 897

Note that (q5, q3, q
′
4), where 5 is blocked by 3 and 3 is blocked by 4 is indeed

reachable in both subsystems of size 4 that include the components 3, 4 and 5,
but it is not reachable by an interaction that causes a local state change of
the medium component 3, so the state’s reachability alone will not affect the
algorithm’s success.

5 Related Work

There exist several approaches to solve the problem of deadlock-detection. In [8]
and [4], sufficient conditions for verifying deadlock-freedom were given, but both
without cost analyses. Then, based on [1] Attie and Chockler gave a sufficient
condition along with a polynomial time algorithm to verify deadlock-freedoom
for Parallel Processes in [2]. However, their framework differs significantly from
the one discussed here. For one thing, it is totally interleaving, i.e. only one
local transition system may change its state at a time, whereas in interaction
systems [4], [6], [7] arbitrarily many (bound by the size of the largest connector)
local transition systems may change their states simultaneously. Furthermore,
actions in [2] are guarded commands, where the guards are conjunctions of pred-
icates of (local) states. That means, it is sufficient as well as necessary for an
action to be blocked that at least one communication partner is in a local state
that does not meet the predicate. Things are different in component-based sys-
tems where an action can occur in different connectors and thus can be blocked
by a whole set of components (due to the combination of their current local
states). Also, [2] compute the set of reachable states of a component j as the
union instead of the intersection of the reachable subsystems projected to j,
i.e. they do not, like we do, take advantage of the fact that a (globally) reach-
able state’s projection must be reachable in all subsystems containing the set
on which we project. Finally the algorithm they present lacks parametrization
which can be critical for success as example 2 shows.

6 Conclusion and Future Work

Our algorithm is (even with d = 3) able to handle the complex trilateration
example Sys2 regardless of the choice of the parameters x, y. That means it
can handle arbitrarily large connectors and an exponential size reachable state
space. Our algorithm profits from (see Sys2), but is not dependent on (see Sys3
with d = 4) symmetric constructs which are discussed in [10] and [11]. Sys3
displays that the problem of “inherent information” can prevent our algorithm
from verifying deadlock-freedom. This fact is, of course, not surprising as in [3]
it is shown that the problem of deadlock-detection in component-based systems
is NP-hard. Nevertheless the existence of non-trivial examples that cannot be
verified in polynomial time by algorithms based on global state space explo-
ration displays the benefit of the presented algorithm. As far as future work is

898 M. Majster-Cederbaum, M. Martens, and C. Minnameier

concerned, we will further investigate the applicability of the algorithm and the
interesting question of the connection between connector sizes and the size d
of subsystems one has to observe. Also, we are working on a generalization of
the algorithm, in order to cover a greater class of systems (still maintaining the
polynomial time bounds, of course).

References

1. Attie, P. and Emerson, A.: Synthesis of Concurrent Systems with Many Similar
Processes. ACM TOPLAS 20 1 (1998) 51–115

2. Attie, P. and Chockler, H.: Efficiently Verifiable Conditions for Deadlock-Freedom
of Large Concurrent Programs. LNCS 3385 (2005) 465–481

3. Minnameier, C.: Deadlock-Detection in Component-Based Systems is NP-Hard.
Technical Report TR-2006-015 (2006)

4. Gössler, G. and Sifakis, J.: Component-Based Construction of Deadlock-Free Sys-
tems. FSTTCS, LNCS 2914 (2003) 420-433

5. Gössler, G. and Sifakis, J.: Composition for Component-Based Modeling. Sci. Com-
put. Program. 55 1-3 (2005) 161-183

6. Sifakis, J.: A Framework for Component-based Construction. Keynote Talk, SEFM
(2005) 293–300

7. Gössler, G., Graf, S., Majster-Cederbaum, M., Martens, M., and Sifakis, J.: An
Approach to Modelling and Verification of Component-based Systems. Accepted
for SOFSEM 2007.

8. Aldini, A. and Bernardo, M.: A General Approach to Deadlock-Freedom Verifica-
tion for Software Architectures. FM 2003, LNCS 2805 658-677

9. Geilen, M.: Non-Exhaustive Model-Checking in Component Based Systems. Jour-
nal of Systems Architecture – The Euromicro Journal (2000)

10. Arons, T., Pnueli, A., Ruah, S., Xu, J., and Zuck, L.D.: Parameterized Verification
with Automatically Computed Inductive Assertions. CAV (2001) 221-234

11. Clarke, E., Enders, R., Filkorn, T., and Jha, S.: Exploiting Symmetry in Temporal
Logic Model Checking. FMSD 9 2 (1996)

12. Tanenbaum, A.: Modern Operating Systems, 2nd ed. Prentice Hall (2001)

Appendix

A Exponential Size Global State Space of Sys2

We show that the reachable global state space of the trilateration example is
of exponential size. The vertices of any triangle can conjointly go into their
�-states, (given that none of the vertices is already in cooperation in another
triangle it belongs to). That means, there are at least as many global states as
there are ways to mark subsets of triangles, such that no pair of adjacent trian-
gles is marked:

For systems with x > 3 and y > 3, the number of triangles exceeds the number
of components. Hence, for sufficiently large examples with n components, we

A Polynomial-Time Checkable Sufficient Condition for Deadlock-Freedom 899

have at least n triangles. Whenever we mark a triangle, the triangle itself plus
the surrounding triangles may no longer be marked and so we always remove
13 (1 triangle + 12 neighbor triangles) from the set of triangles that are left for
marking. It might happen that we mark a triangle which is next to a triangle
which has already been removed from the set of left triangles, or that we mark
a triangle which is at the margin of the trilateration area and thus doesn’t have
12 neighbors, but in both cases we will nevertheless decrease the number of left
triangles by 13 and thus achieve a lower bound for the number of triangles left.
Hence, for n mod 13 = 0 we have at least n · (n − 13) · (n − 26) · ... · 13
ways to mark as many triangles as possible, one after another. As the or-
der in which we mark the triangles is not of concern, we have to divide by
(n/13)! = (n/13) · (n/13 − 1) · ... · 2 · 1. Thus we have at least:

n · (n − 13) · ... · 26 · 13
(n/13) · (n/13 − 1) · ... · 2 · 1 =

n

n/13
· n − 13
(n − 13)/13

... · 13 · 13 = 13(n/13) ≈ 1, 22n

B Proof of Lemma 1

For a reachable state q̃ there is a global transition sequence s
c0→ q1

c1→ ...
cr−1→

qr
cr→ q̃. If q̃ is the first deadlocked state in this sequence let q := q̃, else let q

be the first deadlocked state in the sequence and let D ⊆ K be in deadlock for
q = (q1, ..., qn), such that no proper subset of D is in deadlock in q.

If neither of the components in D changed their local states in the interaction
that lead to q, then D would have been a deadlock in the preceding state already,
which would be a contradiction to our assumptions. So we have ∃j ∈ D, such
that qj �= qr

j .
It remains to show conditions 1 and 2:

Condition 1 follows directly from the definition of deadlocks as j ∈ D. Assume
that condition 2 does not hold, i.e. j in qj does not block any other component
i∈D. Then D\{j} would be in deadlock in q in contradiction to our assumptions.

	Introduction
	Components, Interactions and Interaction Systems
	The Model
	Some Technical Notions

	The Parametrized Polynomial Time Deadlock-Freeness Verification Algorithm
	Applicability
	Related Work
	Conclusion and Future Work
	Exponential Size Global State Space of Sys_2
	Proof of Lemma 1

