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Abstract

Interaction systems are a formal model for component-based systems. Combining components via connectors to form more
complex systems may give rise to deadlock situations. We present here a polynomial time reduction from 3-SAT to the question
whether an interaction system contains deadlocks.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a setting where components are com-
bined via connectors to form more complex systems,
see, e.g., [6,10,11] and [1]. Each individual component
i offers ports ai, bi, . . . ∈ Ai for cooperation with other
components. Each port in Ai represents an action of
component i. The behavior of a component can be rep-
resented via a labeled transition system with starting
state, where in each state there is at least one action
available. Components are glued together via connec-
tors, where each connector interlinks certain ports. In
the global system obtained by gluing components local
deadlocks may arise where a group of components is
engaged in a cyclic waiting and will thus no longer par-
ticipate in the progress of the global system (cf. [12]).
If all components are involved, we speak of a global
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deadlock. We show here that detecting either kind of
deadlock is NP-hard by (polynomially) encoding the
classic 3-SAT problem in deadlock detection for inter-
action systems. For this we show two things: First, we
show that in any system constructed for a formula there
is a local deadlock iff there is a global deadlock. Sec-
ond, we show that a formula is satisfiable iff there is a
reachable global deadlock in the corresponding system.
To ensure these properties, we introduce components
for a clause of a 3-CNF formula, which will always be
able to progress while the clause evaluates to false. So
at the time a deadlock occurs no progress is possible
and, that is, no clause evaluates to false. The paper is
organized as follows. Section 2 contains the basic def-
initions. Section 3 gives the polynomial time reduction
from 3-SAT to the problem of deadlock detection in in-
teraction systems. Section 4 contains a short conclusion
and a discussion of related work.
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2. Components, connectors and interaction systems

We consider here interaction systems, a model for
component-based systems that was proposed and dis-
cussed in detail in [6,11,7] and [1]. An interaction sys-
tem is a tuple Sys = (K, {Ai}i∈K,C, {Ti}i∈K),1 where
K is the set of components. Without loss of generality,
we assume K = {1, . . . , n}. Each component i ∈ K of-
fers a finite set of ports Ai for cooperation with other
components. The port sets Ai are pairwise disjoint. Co-
operation is described by connectors. A connector is a
set of actions c ⊆ ⋃

i∈K Ai , where for each component i

at most one action ai ∈ Ai is in c. A connector set C is
a set of connectors, s.t. every action of every component
occurs in at least one connector of C and no connector
contains any other connector.

The local behavior of each component i is described
by Ti = (Qi,Ai,→i , q

0
i ), where Qi is the finite set of

local states, →i ⊆ Qi × Ai × Qi the local transition
relation and q0

i ∈ Qi is the local starting state. Given a
connector c ∈ C and a component i ∈ K we denote by
i(c) := Ai ∩ c the participation of i in c.

For qi ∈ Qi we define the set of enabled actions
ea(qi) := {a ∈ Ai | ∃q ′

i ∈ Qi , s.t. qi
a→ q ′

i}. We assume
that the Ti ’s are non-terminating, i.e., ∀i ∈ K ∀qi ∈ Qi,

ea(qi) 	= ∅.
The global behavior TSys = (Q,C,→, q0) of Sys

(henceforth called global transition system) is obtained
from the behaviors of the individual components, given
by the transition systems Ti , and the connectors C in a
straightforward manner:

• Q = ∏
i∈K Qi , the Cartesian product of the Qi ,

which we consider to be order independent. We
denote states by tuples (q1, . . . , qn) and call them
global states.

• the relation → ⊆ Q × C × Q, defined by

∀c ∈ C ∀q, q ′ ∈ Q,

q = (q1, . . . , qn)
c−→ q ′ = (q ′

1, . . . , q
′
n) iff

∀i ∈ K
(
qi

i(c)−→ iq
′
i if i(c) 	= ∅ and

q ′
i = qi otherwise

)
.

1 The model in [6] is more general, introduces a notion of interac-
tion, which is a subset of a connector and distinguishes between con-
nectors and complete interactions. We are able to show NP-hardness
for deadlock detection in interaction systems without the use of com-
plete interactions, so we omit them for ease of notation. Note that this
yields a stronger, not weaker result than using complete interactions.
Readers who are familiar with interaction systems may simply assume
Comp = ∅ for Sys(F ) in Section 3.
• q0 = (q0
1 , . . . , q0

n) is the starting state for Sys.

In the global transition system a transition labeled c may
take place when each component participating in c is
ready to perform i(c).

For an example of an interaction system see Exam-
ple 1 at the end of Section 3.

For a global state q = (q1, . . . , qn) ∈ Q we refer to
the local state qj of component j ∈ K by q(j).

Let q = (q1, . . . , qn) ∈ Q be a global state. We say
that some non-empty set D = {j1, j2, . . . , j|D|} ⊆ K of
components is in deadlock in q if ∀i ∈ D ∀c ∈ C, s.t.
c ∩ ea(qi) 	= ∅ ∃j ∈ D, s.t. j (c) 	⊆ ea(qj ). We say that
i waits for j then.

A system has a local deadlock in some global state q

if there is D ⊆ K , that is in deadlock in q . If D = K ,
the system is globally deadlocked. Hence a global dead-
lock is a special case of a local deadlock. A system
is deadlock-free, if there is no reachable state q and
D ⊆ K , such that D is in deadlock in q .

We denote by IS the set of all interaction systems
and by LDIS (GDIS) the set of interaction systems that
contain local (global) deadlocks:

LDIS := {Sys ∈ IS | Sys contains reachable

local deadlocks},
GDIS := {Sys ∈ IS | Sys contains reachable

global deadlocks}.
We consider the well-studied NP-complete 3-SAT prob-
lem [5,4] where the formula is a conjunction of clauses
ki , each of which is a disjunction of 3 literals (i.e., pos-
sibly negated variables) and reduce it to LDIS as well as
GDIS.

3. Reducing 3-SAT to LDIS and GDIS

Let F = k1 ∧ · · · ∧ kn with ki = (l(i,1) ∨ l(i,2) ∨
l(i,3)) be a propositional formula in 3-CNF, where
l(i,1), l(i,2), l(i,3) are positive literals (i.e., variables) or
negative literals (i.e., negated variables). In the fol-
lowing, we construct an interaction system Sys(F ), s.t.
(F ∈ 3-SAT) ⇔ (Sys(F ) ∈ GDIS) ⇔ (Sys(F ) ∈ LDIS).
We represent each clause ki by a component (i,0) and
each literal l(i,j) by a component (i, j). By i + 1 we
mean i + 1, if 1 � i � n − 1 and 1 if i = n.

Sys(F ) = (
K, {A(i,j)}(i,j)∈K,C, {Ti,j }(i,j)∈K

)
, where

K = {
(i, j) | 1 � i � n,0 � j � 3

}
,

A(i,0) = {init(i,0), false(i,0)} for 1 � i � n,

A(i,j) = {init(i,j), set-to-1(i,j), set-to-0(i,j),

true , false } for 1 � i � n, 1 � j � 3,
(i,j) (i,j)
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Fig. 1. The T(i,j)’s for clause-components (a) and literal-components (b) and (c).
C := {{init(i+1,0), init(i,1), init(i,2), init(i,3)} | 1 � i � n
}

∪ {{set-to-1(i1,j1), set-to-1(i2,j2), . . . ,

set-to-1(ia,ja)} | ∃ variable x that occurs

in l(i1,j1), . . . , l(ia,ja) and only there
}

∪ {{set-to-0(i1,j1), set-to-0(i2,j2), . . . ,

set-to-0(ia,ja)} | ∃variable x that occurs

in l(i1,j1), . . . , l(ia,ja) and only there
}

∪ {{false(i,0), false(i,1), false(i,2), false(i,3)} |
1 � i � n

}

∪ {{true(i,j), init(i+1,0)} | 1 � i � n,1 � j � 3
}
.

The local transition systems T(i,0) for 1 � i � n are
given in Fig. 1(a). The local transition systems T(i,j) for
1 � i � n, 1 � j � 3 and l(i,j) is a positive (respectively,
negative) literal are given in Fig. 1(b) (respectively, (c)).

We call components (i,0) clause-components and
components (i, j) where 1 � j � 3 literal-components.
For a component (i, j) we call the state q

f

(i,j) its false-

state and, if it exists, the state qt
(i,j) its true-state. We

call both qt
(i,j) and q

f

(i,j) local final states. We call a
global state q ∈ Q global final state, if all components
are in local final states in q .

There is a natural 1-to-1-correspondence between as-
signments and reachable global final states:

An assignment σ for F corresponds to the global fi-
nal state qend := state(σ ), where all clause-components
are in their false-states (they have no other local final
state) and any literal-component (i, j) that represents a
literal of variable x with σ(x) = 1 (σ(x) = 0) is in the
local final state that is reachable by the set-to-1-action
(by the set-to-0-action).

A global final state qend that is in fact reachable
starting in q0 (i.e., all literal-components for the same
variable have been set conjointly) corresponds to the
assignment σ := ass(qend), where for each variable x,
σ(x) = 1 (σ(x) = 0) if the literal-components in which
x occurs are in their local final states that are reached by
the set-to-1-action (by the set-to-0-action).

Example 1. Let F = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧
(x1 ∨ x2 ∨ x3).

Then, F is satisfiable, namely σ(F ) = 1 for σ(x1)

= 1, σ(x2) = 1, σ (x3) = 0.
Consider the corresponding interaction system

Sys(F ) = (K, {Ai}i∈K,C, {Ti}i∈K ), where K = {(1,0),

(1,1), (1,2), (1,3), (2,0), . . . , (3,3)} and the port sets
{Ai}i∈K as well as the local transition systems {Ti}i∈K

can be seen from Fig. 2.

C := {{init(2,0), init(1,1), init(1,2), init(1,3)},
{init(3,0), init(2,1), init(2,2), init(2,3)},
{init(1,0), init(3,1), init(3,2), init(3,3)}

}

∪ {{set-to-1(1,1), set-to-1(2,1), set-to-1(3,1)},
{set-to-1(1,2), set-to-1(2,2), set-to-1(3,2)},
{set-to-1(1,3), set-to-1(2,3), set-to-1(3,3)}

}

∪ {{set-to-0(1,1), set-to-0(2,1), set-to-0(3,1)},
{set-to-0(1,2), set-to-0(2,2), set-to-0(3,2)},
{set-to-0(1,3), set-to-0(2,3), set-to-0(3,3)}

}

∪ {{ false(1,0), false(1,1), false(1,2), false(1,3)},
{ false(2,0), false(2,1), false(2,2), false(2,3)},
{ false(3,0), false(3,1), false(3,2), false(3,3)}

}

∪ {{true(1,1), init(2,0)}, {true(1,2), init(2,0)},
{true(1,3), init(2,0)}, {true(2,1), init(3,0)},
{true(2,2), init(3,0)}, {true(2,3), init(3,0)},
{true(3,1), init(1,0)}, {true(3,2), init(1,0)},
{true(3,3), init(1,0)}

}
,
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Fig. 2. The local transition systems {T(i,j)}(i,j)∈K for Example 1.
q0 = (
q0
(1,0), q

0
(1,1), q

0
(1,2), q

0
(1,3), q

0
(2,0), q

0
(2,1), q

0
(2,2),

q0
(2,3), q

0
(3,0), q

0
(3,1), q

0
(3,2), q

0
(3,3)

)
.

As said above, F is satisfiable by σ , so we will show that
Sys(F ) can reach the global final state state(σ ), where
K is in deadlock:

We subsequently perform the interactions {init(i+1,0),

init(i,1), init(i,2), init(i,3)} for all 1 � i � 3.
Then, the clause-components (i,0) are in their states

q
f

(i,0) and the literal-components (i, j) are in their states

q1
(i,j).

Now, we perform:

{set-to-1(1,1), set-to-1(2,1), set-to-1(3,1)},
{set-to-1(1,2), set-to-1(2,2), set-to-1(3,2)} and
{set-to-0(1,3), set-to-0(2,3), set-to-0(3,3)}.
Then, K is in deadlock in the global state

qend = (
q

f

(1,0), q
t
(1,1), q

f

(1,2), q
f

(1,3), q
f

(2,0), q
f

(2,1), q
t
(2,2),

qt
(2,3), q

f

(3,0), q
f

(3,1), q
f

(3,2), q
t
(3,3)

)
.

The global deadlock situation is displayed in Fig. 3,
where the nodes (i, j) represent the components (not
their local states) and an edge from node (i1, j1) to
(i2, j2) means that (i1, j1) waits for (i2, j2).

Polynomiality of the reduction. There is no critical
blow-up in notation when we go from F to Sys(F ).
The four transition systems we introduce for each clause
are of constant size. Also, the set-to-1- and set-to-0-
connectors have an overall size which is linear in the
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Fig. 3. A graphical representation of the global deadlock in qend in
Example 1.

number of literals in F and the other (5n) connectors in
C are of constant size.

Remark 1. D is in local deadlock in a reachable state q

and (i, j) ∈ D ⇒ (i, j) is in a local final state.

Assume that (i,0) (1 � i � n) is part of a deadlock
D ⊆ K and in its local non-final state q0

(i,0)
. Obviously

in any case, the enabled init(i,0)-action can be performed
together with the init(i−1,j)-actions of the correspond-
ing literal-components, as those cannot have left their
starting states, so (i,0) cannot be part of a deadlock.

Assume that (i, j) (1 � i � n,1 � j � 3) is part of a
deadlock D ⊆ K and in one of its local non-final states:

If (i, j) is in q0
(i,j)

, then the {init(i+1,0), init(i,1),

init(i,2), init(i,3)}-interaction can still be performed be-
cause the actions init(i,j) (1 � j � 3) occur in no other
connector and the action init(i+1,0) occurs in other con-
nectors {true(i,j), init(i+1,0)} but only together with the
true-actions of the discussed components (i, j) which
they do not offer until they have left their starting states
which is not the case as we assumed that (i, j) is in
q0
(i,j). So (i, j) cannot be part of a deadlock and, in par-

ticular, (i, j) can still proceed to q1
(i,j).

If (i, j) is in q1
(i,j), then the set-to-1- or set-to-0-

actions can still be performed in the future, because no
other literal-component of the same variable can have
reached a local final state, because they can only transi-
tion conjointly (see definition of C). Also, any of these
literal-components can proceed to q1

(i,j) as explained
above, if it is not there already.

So (i, j) can still perform some action in the future
and thus cannot be part of a deadlock.

So (i, j) must be in a local final state.

Lemma 1. (Sys(F ) ∈ GDIS) ⇔ (Sys(F ) ∈ LDIS).
Proof. (⇒) By definition, a global deadlock is a special
case of a local deadlock.

(⇐) (1) Let q be a reachable state in Sys(F ), s.t. D ⊆
K is in local deadlock in q . Then a literal-component
(i, j) (1 � j � 3) participates in D (because the clause-
components do not communicate with each other di-
rectly).

(2) Due to Remark 1, (i, j) must be in a final state.
We show that at least one of the literal-components of
clause i must be in its true-state: Assume that (i, j) is in
q

f

(i,j) (else we are done). Then, ea(q
f

(i,j)) = {false(i,j)},
which occurs in the connector {false(i,0), false(i,1),

false(i,2), false(i,3)}. Even if (i,0) ∈ D, (i,0) would

have to be in its local final state q
f

(i,0)
, so (i, j) would

not wait for (i,0). Hence, one of the literal-components
of clause i must participate in D and be in a final state
(due to Remark 1) where it does not offer the false ac-
tion, i.e., its true-state.

(3) The literal-component of clause i, which is in its
true-state can only wait for the clause-component (i+1,

0). So we have (i + 1,0) ∈ D and (i + 1,0) (due to
Remark 1) has to be in its only local final state, i.e. its
false-state.

(4) As (i + 1,0) ∈ D offers false(i+1,0), at least one
of the literal-components of clause i + 1 has to be in D

and in its true-state. From here, we apply induction by
going to (3) and conclude the same for all clauses. �
Corollary 1 (out of ⇐). If Sys(F ) is in global deadlock,
at least one of the literal-components of each clause is
in its true-state.

Lemma 2. (F is satisfiable) ⇔ (Sys(F ) ∈ GDIS).

Proof. (⇒) Let F = k1 ∧ · · · ∧ kn with ki = (l(i,1) ∨
l(i,2) ∨ l(i,3)) be a satisfiable 3-CNF formula and let
σ(F ) = 1 for an assignment σ .

The starting state of Sys(F ) is q0 := (q0
(1,0), q

0
(1,1),

q0
(1,2), q

0
(1,3), q

0
(2,0), . . . , q

0
(n,3)). Let Sys(F ) perform the

following transitions:
(1) For all 1 � i � n perform the interactions

{init(i+1,0), init(i,1), init(i,2), init(i,3)}. Then all clause-
components (i,0) (1 � i � n) are in their false-states
q

f

(i,0) and all literal-components (i, j), ∀1 � i � n,1 �
j � 3, are in their states q1

(i,j).
(2) Let x be a variable that occurs in F at the posi-

tions (i1, j1), (i2, j2), . . . , (ia, ja) (and only there), and
let σ(x) = 1 (or σ(x) = 0, respectively).

Then perform the interaction {set-to-1(i1,j1),

set-to-1(i2,j2), . . . , set-to-1(ia,ja)} (or {set-to-0(i1,j1),

set-to-0(i ,j ), . . . , set-to-0(ia,ja)}, respectively).
2 2
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After having performed the corresponding interac-
tion for each variable that occurs in F we reached
the global final state qend = state(σ ) that we described
above.

As σ(F ) = 1 we have σ(ki) = 1 ∀1 � i � n, i.e., in
each clause there is at least one literal that evaluates to 1
under σ . This means there is at least one positive literal
l(i,j) = x with σ(x) = 1 or a negative literal l(i,j) = x

with σ(x) = 0. In both cases the corresponding transi-
tion system T(i,j) has reached its local state qt

(i,j) (cf.
Fig. 1 (b) and (c)).

Hence, we have ∀1 � i � n, qend(i,0) = q
f

(i,0) and

ea(q
f

(i,0)
) = {false(i,0)}.

Furthermore, ∀1 � i � n ∃j ∈ {1,2,3}, s.t. qend(i, j)

= qt
(i,j) and ea(qt

(i,j)) = {true(i,j)}.
Obviously, Sys(F ) is in global deadlock in qend (or in

other words D = K is in deadlock in qend in Sys(F )), as
every clause-component (i,0) waits for at least one of
its literal-components (i,1), (i,2), (i,3). Those literal-
components in (i,1), (i,2), (i,3) that are in their qf -
states, also wait for those that are in their qt -states
and those that are in their qt -states wait for the clause-
component (i + 1,0). Hence, we observe a cyclic wait-
ing over all clauses (cf. Example 1, Fig. 3), including all
components. The global deadlock is also a local dead-
lock.

(⇐) F ∈ GDIS means that there is a reachable global
state, where K is in deadlock.

By Corollary 1 we know that at least one component
of every clause must be in its true state.

Due to the one-to-one correspondence of literal-
components to literals and the fact that all occurrences
of a variable x are consistently set to a value ∈ {0,1} and
the fact that in each clause at least one literal evaluates
to “true”, we may conclude the existence of a satisfying
assignment σ . �

So by now we know that the existence of a deadlock
D implies that F is satisfiable. Yet, it is still possible
that some variables have not yet been set to 0 or 1, i.e.,
the corresponding literal-components (ĩ, j̃ ) are not yet
in their final states, so the deadlock D would not be
global. It is however quite obvious, that we still may
perform interactions such that these (ĩ, j̃ ) finally reach
local final states. We call the thus reached state q ′ and in
q ′, D = K is in global deadlock, because the (ĩ, j̃ ), wait
for components that participate in the cyclic waiting, no
matter if q ′(ĩ, j̃ ) = qt

(ĩ,j̃ )
or q ′(ĩ, j̃ ) = q

f

(ĩ,j̃ )
. So the ex-

istence of a local deadlock implies that F is satisfiable
as well as the existence of a global deadlock.
4. Conclusion and related work

We showed that the questions of local and global
deadlock are NP-hard for interaction systems, even
without the use of complete interactions. This yields
a motivation for establishing sufficient conditions for
deadlock-freedom that can be tested in polynomial time.
One such condition has already been presented in [9]
and we are presently working on an enhanced version
that covers a larger set of systems without raising the
given time bounds. Both approaches try to tackle the
problem by a combination of two ideas:

First, we perform state space analyses in subsystems
(i.e., systems that are gained by projecting the whole
system on subsets of K) instead of performing a global
state space analysis. When projecting to subsets K ′ ⊆ K

we lose information about the non-observed compo-
nents K \K ′. We are however able to handle this loss of
information in such a way that it yields an over-approx-
imation of the reachable state space.

Second, we use a locally (in K ′) applicable sufficient
condition for deadlock-freedom (which is again an over-
approximation) to verify deadlock-freedom for the thus
computed set of reachable states of subsystems.

If the algorithm succeeds for a particular system, we
have shown that no state that includes a local deadlock
is reachable. However, if the algorithm fails, we have
gained no information about whether the system con-
tains a deadlock or not.

As far as NP-completeness of the discussed prob-
lems is concerned, there seems to be no trivial way to
show that the problem is in NP, because even if we
guess a deadlock state, it might take an exponentially
long transition sequence to reach it from the starting
state. (Which means that verifying the states reachabil-
ity might take exponential time.) For the related model
of Parallel Processes, Ladkin and Simons showed in [8]
that deadlock-detection is NP-hard. A sufficient condi-
tion for liveness in interaction systems is given in [2].
A different approach to ensure deadlock-freedom and
progress is given in [3].
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