
Termination and Divergence Are Undecidable
Under a Maximum Progress Multi-step

Semantics for LinCa

Mila Majster-Cederbaum and Christoph Minnameier�

Institut für Informatik
Universität Mannheim, Germany
cmm@informatik.uni-mannheim.de

Abstract. We introduce a multi-step semantics MTS-mp for LinCa
which demands maximum progress in each step, i.e. which will only al-
low transitions that are labeled with maximal (in terms of set inclusion)
subsets of the set of enabled actions. We compare MTS-mp with the
original ITS-semantics for LinCa specified in [CJY94] and with a slight
modification of the original MTS-semantics specified in [CJY94]. Given
a LinCa-process and a Tuple Space configuration, the possible transi-
tions under our MTS-mp-semantics are always a subset of the possible
transitions under the presented MTS-semantics for LinCa .

We compare the original ITS-semantics and the presented MTS-
semantics with our MTS-mp-semantics, and as a major result, we will
show that under MTS-mp neither termination nor divergence of LinCa
processes is decidable. In contrast to this [BGLZ04], in the original se-
mantics for LinCa [CJY94] termination is decidable.

1 Introduction

A Coordination Language is a language defined specifically to allow two or more
parties (components) to communicate for the purpose of coordinating operations
to accomplish some shared (computation) goal. Linda seems to be the mostly
known Coordination Language. Ciancarini, Jensen and Yankelevich [CJY94] de-
fined LinCa, the Linda Calculus and gave a single-step, as well as a multi-step
semantics for LinCa.

A Linda process may contain several parallel subprocesses that communicate
via a so called Tuple Space. The Tuple Space is some kind of global store, where
tuples are stored. In Linda, a tuple is a vector consisting of variables and/or con-
stants, and there is a matching relation that is similar to data type matching in
common programming languages. For the purpose of investigating the properties
of the coordination through the Tuple Space it is common practice to ignore the
matching relation and internal propagation of tuples. Tuples are distinguished
from each other by giving them unique names (t1, t2, t3, ...) and LinCa is based
on a Tuple Space that is countably infinite.
� Corresponding author.

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 65–79, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

66 M. Majster-Cederbaum and C. Minnameier

As far as the semantics for LinCa is concerned, the traditional interleaving
point of view does not make any assumptions about the way concurrent actions
are performed, i.e. for any number of processing units and independently of their
speed all possible interleavings of actions are admitted. On the other hand, the
traditional multi-step point of view allows actions to be carried out concurrently
or interleaved.

Let us assume a system, where all processing units work at the same speed
and where all of them are globally clocked. For such a system, we might de-
mand maximum progress, i.e. as long as additional actions can be performed in
the present step they must be. More formally, we consider only (set inclusion)
maximal sets of actions for each step.

Consider, for example, a system where a number of workers (processes) have
to perform different jobs (calculations) on some object (tuple). The objects are
supplied sequentially by some environment, which is represented by the process
foreman. (Readers that are familiar with LinCa might want to have a look at
the end of Section 3, where we model the example in LinCa.)

In a setting with a common clock for all processes where the workers’ cal-
culations (plus taking up the object) can always be finished within one clock
cycle we would (for maximum efficiency) want the systems semantics to rep-
resent the actual proceeding as follows: All workers are idle while the foreman
supplies an object. The foreman waits while all the workers read the object and
perform their jobs simultaneously. All workers put their results into the tuple
space simultaneously while the foreman deletes the object, and so on.

In this paper we study a MTS-mp (Multi-Step Transition System with maxi-
mum progress) semantics that models the specified behavior. As already implic-
itly stated in this example, we assume a data-base-like setting, where multiple
read-operations may be performed on a single instance of a tuple (whereas this is
not the case for in-operations). As a remark, we want to add, that this detail in
design does however not affect the decidability results presented in Section 5 (this
is obvious due to the fact that the given encoding of a RAM in LinCa doesn’t
include any rd-operation). The paper is organized as follows: In Section 2, we set
up notation and terminology. In Section 3, we present the original interleaving se-
mantics for LinCa as well as a multi-step semantics and the MTS-mp semantics.
In Section 4, we establish a relation between the non-maximum-progress seman-
tics and MTS-mp. Finally, Section 5 includes the main purpose of this paper: i.e.
termination and divergence are undecidable for LinCa under MTS-mp. This is
an interesting result as we do adopt the basic version of the LinCa language used
in [BGLZ04], where it is shown that termination is decidable for the traditional
interleaving semantics. In particular, we do not apply the predicative operator
inp(t)?P Q (see, e.g. [BGM00]) that represents an “if-then-else-construct” and
thereby makes it easy to give a deterministic simulation of a RAM .

2 Definitions

– Most sets in this paper represent multisets. Given a multiset M , we write
(a, k) ∈ M (k ≥ 0) iff M includes exactly k instances of the element a. We

Termination and Divergence Are Undecidable 67

will write a ∈ M instead of (a, 1) ∈ M and a �∈ M , instead of (a, 0) ∈ M .
We will use the operators �, \ and ⊆ on multisets in their intuitive meaning.

– Given a multiset M we denote by set(M) the set derived from M by deleting
every instance of each element except for one, i.e.
set(M) = {a | ∃i > 0 ∈ N : (a, i) ∈ M}

– Given a set S we denote the power-multiset (that is the set of subsets that
may include multiple instances of the same element of S) of S by ℘(S).

– LinCa processes:
Note, that by Tuple Space, we denote the basic set from which tuples are
chosen and by Tuple Space configuration we refer to the state of our store
in the present computation, i.e. a Tuple Space configuration is a multiset
over the Tuple Space, i.e. for each Tuple Space configuration M and the
underlying Tuple Space TS, we have M ∈ ℘(TS).

In order to show some properties of the introduced semantics, we will
sometimes modify it slightly, by adding some extra tuples to TS. We will
denote these extra tuples by c, d, e and we will write TScde for TS ∪{c, d, e},
where TS ∩ {c, d, e} = ∅.

Given a fixed Tuple Space TS, we can define the set of processes LinCaTS

as the set of processes derived from the grammar in Figure 1, where ev-
ery time we apply one of the rules {P := in(t).P, P := out(t).P, P :=
rd(t).P, P :=! in(t).P}, t is substituted by an element of the Tuple Space.
in(t), out(t) and rd(t) are called actions. If t ∈ {c, d, e} then they are called
internal actions, else observable actions. Trailing zeros (.0) will be dropped
in examples.

P := 0 | in(t).P | out(t).P | rd(t).P | P | P | ! in(t).P

Fig. 1. LinCa

– ea(P) with P a LinCa-process denotes the multiset of enabled actions of P ,
defined in Figure 2. We define a decomposition of (the tuples used in) ea(P)
into three subsets eaIN (P), eaOUT (P), eaRD(P) as given in Figure 3:

1) ea(0) = ∅
2) ea(in(t).P) = {in(t)}
3) ea(out(t).P) = {out(t)}
4) ea(rd(t).P) = {rd(t)}
5) ea(! in(t).P) = {(in(t), ∞)}
6) ea(P | Q) = ea(P) � ea(Q)

Fig. 2. The set of enabled actions ea(P) of a process P ∈ LinCa

68 M. Majster-Cederbaum and C. Minnameier

eaIN(P) = {(t, i) | (in(t), i) ∈ ea(P)}
eaOUT (P) analogously
eaRD(P) analogously

Fig. 3. The sets eaIN(P), eaOUT (P), eaRD(P) of a process P ∈ LinCa

The notions (in(t), ∞) ∈ ea(P) and (t, ∞) ∈ eaIN (P) describe the fact,
that infinitely many actions in(t) are enabled in P . These notions will only
be used for enabled actions, never for Tuple Space configurations, because
(due to the in-guardedness of replication) all computed Tuple Space config-
urations remain finite.

– A Labeled Transition System is a triple (S, Lab, →), where S is the set of
states, Lab is the set of labels and →⊆ S × Lab × S is a ternary relation (of
labeled transitions). If p, q ∈ S and a ∈ Lab, (p, a, q) ∈ → is also denoted
by: p

a→ q. This represents the fact that there is a transition from state
p to state q with label a. We write p �→ iff � ∃a ∈ Lab, q ∈ S : p

a→ q. In
addition we often want to designate a starting state s0, in this case we use
the quadruple (S, Lab, →, s0).

In the Transition Systems describing the various semantics, states are
pairs < P, M > of LinCa-processes and Tuple Space configurations and
labels are triples (I, O, R) of (possibly empty) multisets of tuples, where I
represents the performed in-actions, O the performed out -actions and R the
performed rd -actions. We write τ instead of (I, O, R) iff I, O, R ∈ ℘({c, d, e})
and call τ internal label and a transition s

τ→ s′ an internal transition. A
label a = (I, O, R) �= τ is called observable label and a transition s

a→ s′ is
called observable transition.

– Let SEM ∈ {ITS, MTS, MTS-mp} (see Section 3 for details). The SEM -
semantics of LinCaTS is given by the Transition System (S, Lab, →), where:
1. S = LinCaTS × ℘(TS)
2. Lab = ℘(TS) × ℘(TS) × ℘(TS)
3. → =→SEM (see Section 3)

For a process P ∈ LinCaTS the SEM -semantics is considered as (S, Lab,
→SEM , < P, ∅ >) and we denote it by SEM [P].

– Given a LTS LTS1 and nodes s1, s
′
1 ∈ S we define: s1

(I,O,R)

→+ s′1
iff ∃s2, ..., sn ∈ S, such that: s1

τ→ s2
τ→ ...

τ→ sn
(I,O,R)→ s′1

– Given a LTS LTS1 with starting state s0 we define its set of traces as follows:

traces(LTS1) := {(a1, a2, ...) ∈ TrLab | ∃s1, s2, ... ∈ S : s0

a1

→+ s1

a2

→+ s2 ...}
where TrLab = (Lab \ {τ})∗ ∪ (Lab \ {τ})∞ and S∗ (S∞) denotes the set of
finite (infinite) sequences over a set S.

– a LTS LTS1 with starting state s0 terminates iff:
∃s1, ..., sn ∈ S, a1, ..., an ∈ Lab : s0

a1→ s1
a2→ ...

an→ sn �→
– a LTS LTS1 with starting state s0 diverges iff it has at least one infinite

transition sequence, i.e: ∃si ∈ S, ai ∈ Lab : s0
a1→ s1

a2→ ...

Termination and Divergence Are Undecidable 69

– Let LTS1 = (S1, Lab1, →1, s01) and LTS2 = (S2, Lab2, →2, s02) be two La-
beled Transition Systems. We write LTS1
 LTS2 iff the following properties
hold:
1) traces(LTS1) = traces(LTS2)
2) LTS2 is able to weakly step simulate LTS1, i.e. ∃R ⊆ S1 × S2 such that:

2.1) (s01, s02) ∈ R and

2.2) (p, q) ∈ R ∧ p
(I,O,R)→ p′ ⇒ ∃q′ ∈ S2 : q

(I,O,R)

→+ q′ ∧ (p′, q′) ∈ R.

3 Semantics

In this section, we introduce the ITS-semantics for LinCa based on the semantics
given in [BGLZ04] and a MTS-semantics that we consider the natural extension
of ITS. In the given MTS-semantics, we allow (in contrast to [CJY94]) an
arbitrarily large number of rd -actions to be performed simultaneously on a single
instance of a tuple.

To describe the various semantics, we split the semantic description in two
parts: a set of rules for potential transitions of LinCa-processes (Figures 4 and 6)
and an additional rule to establish the semantics in which we check if some po-
tential transition is allowed under the present Tuple Space configuration (Fig-
ures 5, 7 and 9).

This allows us to reuse the rules in Figure 4 (henceforth called pure syntax
rules) for the succeeding MTS and MTS-mp semantics. Choosing this represen-
tation makes it convenient to point out common features and differences of the
discussed semantics.

In contrast to [BGLZ04] we label transitions. We have to do so to record which
actions a step-transition performs in order to check if this is possible under the
present Tuple Space configuration. The labels serve as a link between the rules

of pure syntax and the semantic rule: For a potential transition P
(I,O,R)→ P ′

the multisets I/O/R contain the tuples on which we want to perform in/out/rd
actions. In MTS (see Figure 7), such a potential transition is only valid for
some Tuple Space configuration M , if I � set(R) ⊆ M , i.e. M includes enough
instances of each tuple to satisfy all performed in-actions and at least one addi-
tional instance for the performed rd-actions on that tuple (if any rd-actions are
performed). For out-actions there is no such restriction.

In Figure 9 we use the notion of maximality of a potential transition for
some Tuple Space configuration M . Maximality is given iff conditions 1) and
2) in Figure 8 hold, where 1) means, that all enabled out-actions have to be
performed. 2) means, that as many of the in and rd-actions as possible have
to be performed. More precisely 2.1) represents the case, that the number of
instances of some tuple t in the present Tuple Space configuration M exceeds
the number of enabled in-actions on that tuple. In this case all in-actions and
all rd-actions have to be performed.

We define the relations →ITS , →MTS and →MTS-mp as the smallest relations
satisfying the corresponding rule in Figure 5, 7 and 9, respectively.

70 M. Majster-Cederbaum and C. Minnameier

1) in(t).P
({t},∅,∅)→ P

2) out(t).P
(∅,{t},∅)→ P

3) rd(t).P
(∅,∅,{t})→ P

4) ! in(t).P
({t},∅,∅)→ P | ! in(t).P

5) P
(I,O,R)→ P ′

P | Q
(I,O,R)→ P ′ | Q

Fig. 4. ITS: pure syntax (symmetrical rule for 5 omitted)

P
(I,O,R)→ P ′ ∈ ITS-Rules I⊆M R⊆M

<P,M>
(I,O,R)→ ITS <P ′,(M\I)�O>

Fig. 5. ITS

ITS-Rules 1) - 5) (from Figure 4)

6) ! in(t).P
({(t,i)},∅,∅)→

∏

i

P | ! in(t).P

7)
P

(IP ,OP ,RP)→ P ′ Q
(IQ,OQ,RQ)

→ Q′

P | Q
(IP �IQ,OP �OQ,RP �RQ)

→ P ′ | Q′

Fig. 6. MTS: pure syntax

We end this Section by modeling1 the example mentioned in the Introduction
in LinCa. A foreman supplies a group of workers with jobs.

Let P := foreman | worker1 | ... | workern, where:

foreman = out(object).wait.in(object).foreman
workeri = rd(object).out(resulti).workeri

Ciancarini’s original MTS semantics would allow P to evolve in a variety of
ways. However, given a common clock and given that all workers can perform
their rd-operations (as well as their internal calculation which we abstract from
in LinCa) within one clock cycle, the expected/desired maximum-progress be-
havior of P (that has already been described in the introduction) corresponds
to the one and only path in MTS-mp[P].

1 The wait-operator is used for ease of notation only, it is not part of the discussed
language. For details on the usage of the wait-operator see Section 4.2.

Termination and Divergence Are Undecidable 71

P
(I,O,R)→ P ′ ∈ MTS-Rules (I�Set(R))⊆M

<P,M>
(I,O,R)→ MTS <P ′,(M\I)�O>

Fig. 7. MTS

1) (t, i) ∈ eaOUT (P) ⇒ (t, i) ∈ O
∧ 2) (t, i) ∈ M ∧ (t, j) ∈ eaIN(P) ∧ (t, k) ∈ eaRD(P) ⇒

(2.1) j < i ∧ (t, j) ∈ I ∧ (t, k) ∈ R
∨ 2.2) j ≥ i ∧ (t, i) ∈ I ∧ (t, 0) ∈ R
∨ 2.3) j ≥ i ∧ (t, i − 1) ∈ I ∧ (t, k) ∈ R ∧ k ≥ 1)

Fig. 8. Cond. for Maximality of a trans. P
(I,O,R)→ P ′ for some Tuple Space config. M

P
(I,O,R)→ P ′∈MTS-Rules P

(I,O,R)→ P ′ is maximal for M

<P,M>
(I,O,R)→ MTS-mp <P ′,(M\I)�O>

Fig. 9. MTS-mp

4 Relations Between ITS, MTS, MTS-mp

For all P ∈ LinCa the following properties hold for the defined semantics ITS,
MTS and MTS-mp:

– ITS [P] is always a subgraph of MTS [P], as the pure syntax rules for ITS in
Figure 4 are a subset of those for MTS in Figure 6 and the way the semantics
are based on (Figures 5 and 7) the pure syntax rules is the same.

– MTS-mp[P] is always a subgraph of MTS [P], as the pure syntax rules for
MTS and MTS-mp are the same but for the MTS-mp semantics in Figure 9
we apply a stronger precondition than for the MTS semantics in Figure 7.

By LinCacde we denote the LinCa language based on an extended Tuple Space.
That is, we assume the existence of 3 designated tuples c,d,e that are not ele-
ments of the original LinCa Tuple Space. We extend our MTS-mp semanics to
treat actions on these tuples just like any other actions in the purely syntactic
description. However in Transition Systems whenever (I, O, R) consists of noth-
ing but designated tuples we replace it by τ , the internal label. Whenever some
internal actions are performed concurrently with some observable actions, the
label of the resulting transition will simply consist of the observable ones.

By MTS-mp[P] where P ∈ LinCacde we denote its semantics as described
above.

72 M. Majster-Cederbaum and C. Minnameier

4.1 The Relation Between ITS and MTS-mp

In this subsection we define an encoding encITS : LinCa → LinCacde and prove
that ITS [P]
 MTS-mp[encITS(P)] holds.

encITS is composed of the main encoding ẽncITS and a parallel out(c):

ẽncITS(0) = 0
ẽncITS(act(t).P) = in(c).act(t).out(c).enc(P)
ẽncITS(P | Q) = enc(P) | enc(Q)
ẽncITS(! in(t).P) = ! in(c).in(t).out(c).enc(P)

encITS(P) = ẽncITS(P) | out(c)

Theorem 1. ITS[P]
 MTS-mp[encITS(P)]

Proof. 1) Weak Similarity
encITS(P) puts a prefix in(c) in front of and a suffix out(c) behind every action
in P . The weak step simulation deterministically starts by performing the inter-
nal action out(c) and subsequently simulates every step of the ITS Transition
System by performing three steps as follows:

First, we remove the encoding-produced guarding in(c)-prefix from the observ-
able action we want to simulate (henceforth we call this unlocking an action)
then we perform this action and finally we perform the suffix out(c) to supply
the Tuple Space configuration with the tuple c for the simulation of the next
action. As all described steps are indeed maximal, the transitions are valid for
MTS-mp.

2) Equality of traces
traces(ITS[P]) ⊆ traces(MTS-mp[encITS(P)]) follows immediately from weak
similarity. As for the reverse inclusion: MTS-mp[encITS(P)] can either unlock
an action that can be performed under the present Tuple Space configuration
then ITS[P] can perform the same action directly. MTS-mp[encITS(P)] could
also unlock an action that is blocked under the present Tuple Space configura-
tion, but in this case the computation (and thus the trace) halts due to the total
blocking of the process encITS(P) (as the single instance of tuple c has been
consumed without leaving an opportunity to provide a new one).

4.2 The Relation Between MTS and MTS-mp

First, we introduce the basic encoding enc: LinCa → LinCacde, that simply
prefixes every action of a process with an additional blocking in(c) action.

enc(0) = 0
enc(act(t).P) = in(c).act(t).enc(P)
enc(P | Q) = enc(P) | enc(Q)
enc(! in(t).P) = ! in(c).in(t).enc(P)

Termination and Divergence Are Undecidable 73

Second, we introduce the encoding ẽncMTS which encodes a process by enc and
provides it with an additional parallel process P̃ . All actions performed by P̃ are
internal actions, and P̃ will be able to produce an arbitrary number of instances
of the tuple c simultaneously.

We define: P̃ := ! in(d).[rd(e).out(c) | out(d)]
| ! in(d).out(e).wait.in(e).wait.out(d)

ẽncMTS(P) := enc(P) | P̃ | out(d)

Strictly speaking the wait -operator used in P̃ is not included in LinCa. We
nevertheless use it because a wait -action (which has no other effect on the rest
of the process and is not observable) can be implemented by a rd-action in the
following way. Let t∗ be a designated tuple that is not used for other purposes. If
P is a LinCa-process except for the fact, that it may contain some wait -actions
then we consider it as the process P [wait/rd(t∗)] | out(t∗). However, we state
that the wait -actions are not at all needed for the correctness of the encoding
and we added them only for ease of proofs and understanding.

We now define the final encoding encMTS , that adds the parallel process
out(d) with the single purpose to put a tuple d into the initially empty Tuple
Space configuration to activate the process P̃ .

Theorem 2. MTS[P]
 MTS-mp[encMTS(P)]

Proof. 1) Weak similarity
The proof is similar to that of Theorem 1. Whenever we want to simulate some

step < P, M >
(I,O,R)→ MTS< P ′, M ′ > (where |I|+ |O|+ |R| = z) P̃ first produces

z processes rd(e).out(c) by subsequently performing z times in(d) and out(d) in
line 1 of P̃ . Then line 2 of P̃ is performed, i.e. the tuple e is provided and then
read simultaneously by the z rd(e).out(c)-processes (and deleted by in(e) imme-
diately afterwards). This causes the simultaneous production of z instances of c,
which are used to unlock the desired actions in enc(P) in the subsequent step.
As the step we want to simulate is valid in MTS and as all other actions (besides
the second internal wait -action of P̃ that is in fact performed simultaneously)
are still blocked by their prefixes in(c) the step is also maximal and thus it is
valid in MTS-mp.

2) Equality of traces
Again, traces(ITS[P]) ⊆ traces(MTS−mp[encITS(P)]) follows immediately
from weak similarity. We give a sketch of the proof of the reverse inclusion:

The process P̃ performs some kind of loop in which it continuously produces
arbitrary numbers of instances of the tuple c (let the number of produced c’s be
z). In the subsequent step (due to our maximality-request) as many actions in(c)
as possible are performed. The actual number of these unlockings is restricted
either by the number of enabled in(c) processes (let this number be x, i.e. (c, x) ∈
eaIN(enc(P))) in case x ≤ z or by the number of instances of c that we have
produced in case x > z.

74 M. Majster-Cederbaum and C. Minnameier

In the next step we perform as many unlocked actions as possible. That might
be all of them, if the present Tuple Space configuration M allows for it, or a subset
of them. In any of those cases, the same set of actions can instantly be performed
in MTS[P] and it simply remains to show that neither the overproduction of c’s,
nor the unlocking of more actions than we can simultaneously perform under M
will ever enable any observable actions, that are not already enabled in MTS[P].
To show this, we define a relation R′ that includes all pairs (< P, M >, <
encMTS(P), M�{d} >) as well as any pair (< P, M >, s′) where s′ is a derivation
from < encMTS(P), M �{d} > by τ -steps, and show, that whenever (s1, s2) ∈ R′

and s2 performs an observable step in MTS-mp[encMTS(P)], s1 will be ready to
imitate it in MTS[P].

5 Termination and Divergence Are Undecidable in
MTS-mp-LinCa

5.1 RAMs

A Random Access Machine (RAM) M̂ [SS63] consists of m registers, that may
store arbitrarily large natural numbers and a program (i.e. sequence of n enu-
merated instructions) of the form:

I1
I2
...

In

Each Ii is of one of the following types (where 1 ≤ j ≤ m, s ∈ N):

a) i : Succ(rj)
b) i : DecJump(rj, s)

A configuration of M̂ can be represented by a tuple < v1, v2, ..., vm, k >∈ Nm+1,
where vi represents the value stored in ri and k is the number of the command
line that is to be computed next.

Let M̂ be a RAM and c =< v1, v2, ..., vm, k > the present configuration of
M̂ .

Then we distinguish the following three cases to describe the possible transi-
tions:

1) k > n means that M̂ halts, because the instruction that should be computed
next doesn’t exist. This happens after computing instruction In and passing on
to In+1 or by simply jumping to a nonexistent instruction.
2) if k ∈ {1, ..., n} ∧ Ik = Succ(rj) then vj and k are incremented, i.e. we incre-
ment the value in register rj and succeed with the next instruction.
3) if k ∈ {1, ..., n} ∧ Ik = DecJump(rj , s) then M̂ checks whether the value vj

of rj is > 0. In that case, we decrement it and succeed with the next instruction
(i.e. we increment k). Else (i.e. if vj = 0) we simply jump to instruction Is, (i.e.
we assign k := s).

Termination and Divergence Are Undecidable 75

We say a RAM M̂ with starting configuration < v1, v2, ..., vm, k > terminates
if its (deterministic) computation reaches a configuration that belongs to case
1). If such a configuration is never reached, the computation never stops and
we say that M̂ diverges. It is well-known [M67] that the question whether a
RAM diverges or terminates under a starting configuration < 0, ..., 0, 1 > is
undecidable for the class of all RAMs.

It is quite obvious, that for those LinCa-dialects that include a predicative
in-operator inp(t)?P Q (with semantical meaning if t ∈ TS then P else Q, for
details see e.g. [BGM00]) the questions of termination and divergence are un-
decidable (moreover those dialects are even Turing complete), as for any RAM
there is an obvious deterministic encoding.

However neither the original Linda Calculus [CJY94] nor the discussed variant
(adopted from [BGLZ04]) include such an operator and the proof that neither
termination nor divergence are decidable under the MTS-mp semantics is more
difficult.

We will define encodings term and div that map RAM s to LinCa-processes
such that a RAM M̂ terminates (diverges) iff the corresponding Transition Sys-
tem MTS-mp[term(M̂)] (MTS-mp[div(M̂)]) terminates (diverges).

While the computation of M̂ is completely deterministic, the transitions in
the corresponding LTS given by our encoding may be nondeterministic. Note
that every time a nondeterministic choice is made, there will be one transition
describing the simulation of M̂ , and one transition that will compute something
useless. For ease of explanations in Sections 5.2 and 5.3 we call the first one right
and the second wrong.

To guarantee that the part of the LTS that is reached by a wrong transition
(that deviates from the simulation) does not affect the question of termination
(divergence) we will make sure that all traces of the corresponding subtree are
infinite (finite). This approach guarantees that the whole LTS terminates (di-
verges) iff we reach a finite (an infinite) trace by keeping to the right transitions.

Our encodings establish a natural correspondence betweenRAM configurations
and Tuple Space configurations, i.e. the RAM -configuration < v1, v2, ..., vm, k >
belongs to the Tuple Space configuration {(r1, v1), ..., (rm, vm), pk}. For a RAM
configuration c we refer to the corresponding Tuple Space configuration by TS(c).

Theorem 3 (RAM Simulation). For every RAM M̂ the Transition System
MTS-mp[term(M̂)] (MTS-mp[div(M̂)]) terminates (diverges) iff M̂ terminates
(diverges) under starting configuration < 0, ..., 0, 1 >.

5.2 Termination Is Undecidable in MTS-mp-LinCa

Let term: RAMs → LinCa be the following mapping:

term(M̂) =
∏

i∈{1,...,n}
[Ii] | ! in(div).out(div) | in(loop).out(div) | out(p1)

where the encoding [Ii] of a RAM -Instruction in LinCa is:

76 M. Majster-Cederbaum and C. Minnameier

[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)
[i : DecJump(rj , s)] = ! in(pi).[out(loop) | in(rj).in(loop).out(pi+1)]

| ! in(pi).[in(rj).out(loop)
| wait.wait.out(rj).in(loop).out(ps)]

Note that the first (deterministic) step of term(M̂) will be the initial out(p1).
The resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For ease of
notation, we will henceforth also denote the above defined process where out(p1)
has already been executed by term(M̂).

We now describe (given some RAM M̂ and configuration c) the possible tran-
sition sequences from some state < term(M̂), TS(c) > in MTS-mp[term(M̂)].
In cases 1 and 2 the computation in our LTS is completely deterministic and
performs the calculation of M̂ . In case 3 the transition sequence that simulates
DecJump(rj,s) includes nondeterministic choice. As described in Subsection 5.1
performing only right choices (cases 3.1.1 and 4.1.1) results in an exact simulation
of M̂ ’s transition c →M̂ c′, i.e. the transition sequence leads to the corresponding
state < term(M̂), TS(c′) >. Performing at least one wrong choice (cases 3.1.2,
3.2, 4.1.2 and 4.2) causes the subprocess ! in(div).out(div) to be activated, thus
assuring that any computation in the corresponding subtree diverges (denoted by
�). (In this case other subprocesses are not of concern because they can’t interfere
by removing the tuple div, so we substitute these subprocesses by “...”.)

1. k > n, i.e. M̂ has terminated. Then <term(M̂), TS(c)> is totally blocked.

2. k ∈ {1, ..., n} ∧ Ik = k : Succ(rj), then M̂ increments both rj and k.
The corresponding transition sequence in MTS-mp[term(M̂)] is:

<term(M̂), TS(c)>
→ <term(M̂) | out(rj).out(pk+1), TS(c) \ {pk}>
→ <term(M̂) | out(pk+1), TS(c) \ {pk} � {rj}>
→ <term(M̂), TS(c) \ {pk} � {rj , pk+1}>
= <term(M̂), TS(c′)>

3. k ∈ {1, ..., n}∧ Ik = k : DecJump(rj, s)∧ vj �= 0, then M̂ decrements rj and
increments k. The possible transition sequences in MTS-mp[term(M̂)] are:
<term(M̂), TS(c)>nondet.→
3.1 right:
<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj} � {loop}>nondet.→
3.1.1 right - right:

<term(M̂) | out(pk+1), TS(c) \ {pk, rj}>
→ <term(M̂), TS(c) \ {pk, rj} � {pk+1}>
= <term(M̂), TS(c′)>

3.1.2 right - wrong:
<term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj} � {loop}>

→ <... | out(div), TS(c) \ {pk, rj}>�

Termination and Divergence Are Undecidable 77

3.2 wrong :
<term(M̂) | in(rj).out(loop) | wait2.out(rj).in(loop).out(ps), TS(c) \ {pk}>

→ <term(M̂) | out(loop) | wait.out(rj).in(loop).out(ps), TS(c) \ {pk, rj}>
→ <term(M̂) | out(rj).in(loop).out(ps), TS(c) \ {pk, rj} � {loop}>
→ <... | out(div), TS(c) \ {pk}>�
4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj , s) ∧ vj = 0, then M̂ assigns k := s

<term(M̂), TS(c)>nondet.→
4.1 right:

→<term(M̂) | in(rj).out(loop) | wait2.out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | wait.out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | in(loop).out(ps), TS(c) \ {pk} � {rj}>
→<term(M̂) | out(loop) | in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(loop).out(ps), TS(c) \ {pk} � {loop}>nondet.→

4.1.1 right - right:
<term(M̂) | out(ps), TS(c) \ {pk}>

→ <term(M̂), TS(c) \ {pk} � {ps}>
= <term(M̂), TS(c′)>

4.1.2 right - wrong:
<... | out(div), TS(c) \ {pk}>�
4.2 wrong:
<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(rj).in(loop).out(pk+1), TS(c) \ {pk} � {loop}>
→ <... | out(div), TS(c) \ {pk}>�

5.3 Divergence Is Undecidable in MTS-mp-LinCa

Let div: RAMs → LinCa be the following mapping:

div(M̂) =
∏

i∈{1,...,n}
[Ii] | in(flow) | out(p1)

where the encoding [Ii] of a RAM -Instruction in LinCa is:

[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)
[i : DecJump(rj , s)] = ! in(pi).in(rj).out(pi+1)

| ! in(pi). [in(rj).out(flow)
| wait2.out(rj).in(flow).out(ps)]

Note that the first (deterministic) step of div(M̂) will be the initial out(p1). The
resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For ease of
notation, we will henceforth also denote the above defined process where out(p1)
has already been executed by div(M̂).

78 M. Majster-Cederbaum and C. Minnameier

We now describe (given some RAM M̂ and configuration c) the possible
transition sequences from some state < div(M̂), TS(c) > in MTS-mp[div(M̂)].
In cases 1 and 2 the computation in our LTS is completely deterministic and
performs the calculation of M̂ . In case 3 the transition sequence that simulates
DecJump(rj,s) includes nondeterministic choice. As described in Subsection 5.1
performing only right choices (cases 3.1 and 4.1.1) results in an exact simulation
of M̂s transition c →M̂ c′, i.e. the transition sequence leads to the corresponding
state < div(M̂), TS(c′) >. Performing at least one wrong choice (cases 3.2, 4.1.2
and 4.2) causes the tuple flow to be removed from the Tuple Space configura-
tion, thus leading to some state < P, M > where P is totally blocked under M ,
denoted by < P, M > �→. For cases 1 and 2 see preceding subsection.

3. k ∈ {1,..., n} ∧ Ik = k : DecJump(rj, s) ∧ vj �= 0, then M̂ decrements rj and
increments k. The possible transition sequences in MTS-mp[div(M̂)] are:
<div(M̂), TS(c)>nondet.→
3.1 right:
<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}>

→ <div(M̂) | out(pk+1), TS(c) \ {pk, rj}>
→ <div(M̂), TS(c) \ {pk, rj} � {pk+1}>
= <div(M̂), TS(c′)>

3.2 wrong:
<div(M̂) | in(rj).out(flow) | wait2.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk, rj}>
→ <div(M̂) | out(rj).in(flow).out(ps), TS(c) \ {pk, rj} � {flow}>
→ <Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> �→
4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj , s) ∧ vj = 0, then M̂ assigns k := s

<div(M̂), TS(c)>nondet.→
4.1 right:
<div(M̂) | in(rj).out(flow) | wait2.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(rj).out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(rj).out(flow) | out(rj).in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(rj).out(flow) | in(flow).out(ps), TS(c) \ {pk} � {rj}>
→ <div(M̂) | out(flow) | in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(flow).out(ps), TS(c) \ {pk} � {flow}>nondet.→

4.1.1 right - right:
<div(M̂) | out(ps), TS(c) \ {pk}>

→ <div(M̂), TS(c) \ {pk} � {ps}>
= <div(M̂), TS(c′)>

4.1.2 right - wrong:
<Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> �→

Termination and Divergence Are Undecidable 79

4.2 wrong:
<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}> �→

6 Conclusion

In order to guarantee maximum utilization of processing units in a MIMD set-
ting, we modified Ciancarini’s MTS-semantics for LinCa. We restricted the valid
paths of the Multi Step Transition System to those in which in each step there
are performed as many actions as possible. Pursuing the aim of maximizing the
resource utilization we found it astounding that the restriction to paths satis-
fying the maximum progress condition causes a change in expressiveness. The
fact that a RAM can be simulated (nondeterministically) is non-trivial for two
reasons: First, we are not able to implement an if-then-else construct (or at least
there is no obvious way to do that) without the usage of predicative tuple space
operators. Second, we do not even allow for a choice-operator and as a conse-
quence we have to “neutralize” remaining process-artifacts in order to prevent
them from interfering with the calculation at some time in the future.

We also discussed the relation between our semantics and ITS and MTS,
respectively. The outcome of our analysis is that in all future approaches of
maximizing the resource utilization for LinCa in a multiple-step scenario, one
has to take into account that - unpleasantly - there are programs for which
termination is undecidable. Nevertheless the existence of such programs does
not mean that demanding maximum progress is not meaningful or useless.

References

[BGLZ04] Mario Bravetti, Roberto Gorrieri, Roberto Lucchi, Gianluigi Zavattaro.
Adding Quantitative Information to Tuple Space Coordination Languages,
Bologna, Italy, July 04.

[BGM00] Frank S. de Boer, Maurizio Gabbrielli, Maria Chiara Meo, A Timed
Linda Language, Lecture Notes in Computer Science, Volume 1906, Pages
299-304, Jan 2000.

[BGZ00] Nadia Busi, Roberto Gorrieri, Gianluigi Zavattaro. On the Expressive-
ness of Linda Coordination Primitives Information and Computation Vol.
156(1-2), p.90-121, January 2000.

[BZ05] Nadia Busi, Gianluigi Zavattaro. Prioritized and Parallel Reactions in
Shared Data Space Coordination Languages, COORD05. Namur, Belgium.
LNCS 3454, p.204-219, 2005.

[CJY94] Paolo Ciancarini , Keld K. Jensen , Daniel Yankelevich. On the Oper-
ational Semantics of a Coordination Language Selected papers from the
ECOOP’94 Workshop on Models and Languages for Coordination of Par-
allelism and Distribution, Object-Based Models and Languages for Con-
current Systems, p.77-106, 1994.

[M67] M.L.Minksy - Computation: finite and infinite machines, Prentice Hall,
Englewoof Cliffs, 1967.

[SS63] J.C. Sheperdson, J.E. Sturgis. Computability of recursive functions. Journal
of the ACM, Vol. 10, p. 217-255, 1963.

	Introduction
	Definitions
	Semantics
	Relations Between ITS, MTS, MTS-mp
	The Relation Between ITS and $MTS-mp$
	The Relation Between MTS and $MTS-mp$

	Termination and Divergence Are Undecidable in MTS-mp-LinCa
	RAMs
	Termination Is Undecidable in MTS-mp-LinCa
	Divergence Is Undecidable in MTS-mp-LinCa

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

